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Financial transaction prices typically lie on a discrete grid of values and arrive at random 
times.  This paper proposes an econometric model with this structure.  The distribution of 
each price change is a multinomial, conditional on past information and the time interval 
between the transactions.  The proposed autoregressive conditional multinomial model is 
not restricted to be markov or symmetric in response to shocks, however such restrictions 
can be imposed.   The duration between trades is modeled as an ACD model following 
Engle and Russell (1998).  Maximum likelihood estimation and testing procedures are 
developed.  The model is estimated with 12 months of tick data on a moderately 
frequently traded NYSE stock, Airgas.  The preferred model is estimated with three lags 
for the ACM and two lags for the ACD.  Both price returns and squared returns influence 
future durations and present and past durations affect price movements.  The model 
exhibits reversals in transaction prices in the short run due to bid-ask bounce and 
clustering of large moves of either sign in the longer run.   Evidence of symmetry in the 
dynamics of prices is presented, but the response to durations is clearly non-symmetric.  
It is found that the volatility per second of trades is highest for short duration trades and 
that expected returns are lower for longer duration trades. 
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1.  Introduction 

  

The role of computers in modern business has generated a new type of economic 

data where every single transaction is recorded.  Nowhere is this refinement in data 

collection more extensive than for financial data where transaction by transaction data 

sets contain detailed information about precisely when an asset is traded, as well as 

characteristics such as the transaction price and quantity.  These new data sets provide us 

with an unprecedented microscopic view of the structure of financial markets that was 

previously impossible with time aggregated data.   

Econometric modeling of transaction by transaction price dynamics is 

complicated by several features of the data.  First, in a continuous auction market, such as 

the NYSE or the NASDAQ, transactions can occur at any point in time that the market is 

operational.  As such, transactions do not occur at regularly spaced time intervals.   The 

times between trades are random and are potentially informative about the underlying 

processes.  Second, every financial market structure specifies a minimum unit of price 

measurement called ticks.  That is, transaction prices must fall on a grid.  When viewed 

over long time horizons, the variance of price changes greatly exceeds the effects of 

discreteness so that treating the data as continuous is unlikely to have a meaningful 

impact on the analysis.  At the transaction by transaction frequency, however, price 

discreteness becomes a dominant feature of the data2.  Often institutional rules in markets 

restrict the magnitude of transaction by transaction price movements.  In the NYSE this is 

done by the specialist who is responsible for “price continuity”.  In other electronic 

markets, like the Taiwan stock exchange, price restrictions are directly imposed so 

consecutive prices can differ by no more than a fixed number of ticks.  Hence the 

observed price changes often take just a handful of values.  For the transactions data 

                                                 
2 Institutional rules for a given market determine the granularity of the discreteness.  The data that is 
considered in this paper is from the NYSE and price changes are restricted to $1/16th’s.  The NYSE and 
NASDAQ began transitioning to a decimal system in August of 2000.   The process was completed in 
January 2001.   
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studied in this paper, for example, we find that 99.3% of the price changes fall on one of 

just five different values.   

An econometric model of such a process must be a continuous time process in 

that it should give at every instant of time the probability of observing a transaction at a 

particular discrete price, conditional on the past history of these processes.  Most 

econometric models are not capable of this task and proceed by first converting to 

calendar time and second, ignoring the discreteness of prices.  Any such procedure 

inevitably involves a loss of information and frequently leads to bias.     

This paper proposes a new approach to modeling high-frequency transaction price 

dynamics that addresses both the spacing of the data and the discreteness.  We propose 

treating the transactions data as a sequence of arrival times and characteristics associated 

with those arrival times.  This is commonly referred to as a marked point process in the 

statistics literature.  Following Engle (2000) we decompose the joint distribution into the 

product of the conditional distribution of price changes and the marginal distribution of 

the time interval.  We propose using a variation of the ACD model of Engle and Russell 

(1998) for the marginal distribution of arrival times.  A new model is then proposed for 

the discrete price movements that is flexible enough to capture the complex temporal 

dependence typically displayed by high-frequency transactions data.  The model is 

termed the Autoregressive Conditional Multinomial (ACM) model.  

While the proposed ACM model seems particularly well suited for analysis of 

financial transactions data, or movements in the midpoint of the discrete bid and ask 

quotes, it could be useful in many other applications involving time series of discrete 

random variables.  For example, traders face a fixed number of possible order flow 

strategies involving market orders vs. limit orders.  The model may be useful in the study 

of the dynamics of order flow without the need to impose a markovian structure.  

Alternatively, the ACM model may prove useful for credit risk ratings in financial 

markets or in marketing where the product brand purchased by consumers over time is of 

interest.  The model can be applied to fixed interval data or, if the time series is viewed at 

irregular intervals, jointly modeled using the durations and the discrete random variable 

of interest.  Hence, while the immediate application is to financial transactions data we 

believe the model could prove useful in a variety of other settings.   
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The model is applied to an NYSE traded stock.  Given the joint distribution, the 

nature of the dependence between contemporaneous durations and transaction price 

changes can be examined.  Two strands of theoretical market microstructure models 

provide predictions regarding the nature of dependence between transaction rates and 

price adjustments.  First, Easley and O’Hara (1992) suggest that high trading rates may 

be associated with the presence of informed traders.  In a rational expectations setting the 

specialist will make price adjustments more sensitive to order flow, thereby increasing 

volatility.  Hence rapid trading should be associated with higher volatility.  Second, 

Diamond and Verrecchia (1987) suggest that short sale constraints restrict the ability of 

privately informed agents possessing “bad news” to transact and capitalize on their better 

information.  Since no such restraints exist in long positions high trading rates tend to be 

associated with good news and rising prices while the converse is true for slow trading 

rates.   

The preferred model is estimated with three lags for the ACM and two lags for the 

ACD.  Both price returns and squared returns influence future durations and present and 

past durations affect price movements.  The model exhibits reversals in transaction prices 

in the short run due to bid-ask bounce and clustering of large moves of either sign in the 

longer run.   Evidence of symmetry in the dynamics of prices is presented, but, consistent 

with the theory of short sale constraints and information in Diamond and Verrecchia 

(1987), we find that the response to durations is clearly non-symmetric with long 

durations predicting falling prices. Consistently with Easley and O’Hara (1992), we find 

that the volatility per second of trades is highest for short duration trades and that 

expected returns are lower for longer duration trades. Finally, both price changes and 

squared price changes are found to influence future durations.   

 This paper is organized as follows.  Section 2 discusses the general modeling 

approach for irregularly spaced, discrete valued transactions data advocated in the paper.  

Section 3 introduces the ACM model for the discrete price changes.  Some theoretical 

properties of the model are developed and estimation and model diagnostics are also 

presented in this section.  Parameter restrictions for the ACM model derived from a 

symmetry condition are also considered.  Section 4 presents model estimates and analysis 

for an NYSE traded stock and section 5 concludes.   
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2.  An approach to joint modeling of arrival times and price changes.   

 

The modeling strategy we adopt is conveniently motivated by first considering a 

short, representative sample of trades for the NYSE listed stock Airgas (ARG).  In Figure 

1a calendar time (or clock time) is on the horizontal axis and the price is on the vertical 

axis.  Each diamond represents a point in time that a transaction occurred and the 

associated price. Two features of the data immediately become apparent.  First, the 

intertrade durations vary significantly within the sample.  This can be observed in the plot 

by noting the occasional long horizontal stretch between observations.  Second, the 

transaction price changes take just 5 different values in this sample.  Hence price 

discreteness is a dominant feature of the data.   

In this paper we propose decomposing the time series plotted in Figure 1a into a 

bivariate system.  This is shown graphically in Figures 1b and 1c.   Figure 1b presents the 

discrete price changes from transaction to transaction.  Figure 1c presents the counting 

function  that denotes the number of transactions that have occurred by time t.  These 

series comprise the bivariate system.  More formally, let ti denote the arrival time of the 

ith transaction.  Let N(t) denote the counting function which describes the number of 

events that have occurred by time t.  A sequence of arrival times that are strictly 

increasing is called a simple point process.  At each transaction time ti we denote the 

associated realization of the trade-to-trade change in the asset price by yi. The bivariate 

process of arrival times and marks is called a marked point process.  Since transaction 

price changes are typically discrete in nature we consider y to be a multinomial random 

variable.   

A simple point process can be completely described by the sequence of arrival 

times ti or the durations 1−−= iii ttτ .  Our goal is to develop a model for the joint 

distribution of the discrete price changes and durations conditional on the bivariate 

filtration of arrival times and price changes.  We denote this conditional bivariate density 

by ( ) ( )( )11 ,, −− ii
ii yyf ττ  where ( ) ( )121

1 ,...,, yyyy ii
i

−−
− =  and ( ) ( )121

1 ,...,, ττττ −−
− = ii

i .    Our 

discussion entails a substantial use of super/subscripts.  The reader is referred to 

Appendix A for a summary of the superscript/subscript notation. 



 6

As discussed in Engle (2000), without any loss in generality we can decompose 

the joint conditional density of yi and τi into the product of the conditional density of the 

mark and the marginal density of the arrival times, both conditioned on the past filtration 

of the joint information set.  That is, if ( ),i if y τ  denotes the joint density of yi and τi then 

 

(1) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )11111 ,,,, −−−−− = ii
i

ii
i

ii
ii yqyygyyf τττττ  

 

Where g(⋅) denotes the probability density function associated with the price changes yi 

conditional on τ(i) and y(i-1).  q(⋅) denotes the density function of the ith duration 

conditional on τ(i-1),  y(i-1).  Clearly the joint density in (1) allows us to study the 

relationship between price changes and contemporaneous durations as well as analyze 

their joint dynamics.   

 Models that explain the probability of each possible outcome of a discrete random 

variable at time τ, are often called competing risks models3.   The joint density in 

equation (1) clearly yields such a set of probabilities.  Competing risks models are 

generally specified by the instantaneous probability of exit to state y given a duration τ.  

The hazard function denoting the instantaneous probability that the ith trade exits to state 

y given the duration τ since the last event: 

 

(2) ( )
( ) ( )( )1 1

0

Pr , | , ,
, lim

i i
i i i

i t

Y y t y
y

t

τ τ τ τ τ τ
θ τ

− −

∆ →

= ≤ < + ∆ ≥
=

∆
 

 

For small values of ∆t, ( ),i y tθ τ ∆  is approximately equal to the probability of exit to 

state y over the time period [ ]ttt ∆+,  given no transaction has occurred by duration τ .  

The hazard functions are easily obtained from (1) and are given by: 

 

                                                 
 

3 See Kalbfleish and Prentice (1980) or, more recently, Lancaster (1990) for references on duration models. 



 7

(3) ( ) ( ) ( )( ) ( ) ( )( )1 1 1,  ,i i i i
i y y g y yθ τ κ τ τ τ− − −=  

 

 where ( ) ( )( )
( ) ( )( )

( ) ( )( )
1 1

1 1

1 1

0

,
,

1 ,

i i

i i

i i

q y
y

q s y ds
τ

τ τ
κ τ τ

τ

− −

− −

− −
=

− ∫
 is the hazard function associated with 

the distribution of the waiting times between transactions.  

Clearly, conditional moments of the price changes can be directly obtained from 

(1).  Moments of price changes and trading rates over more than one transaction can 

sometimes be expressed analytically, but calendar time measures will generally require 

simulations. 

 Instantaneous moments of the price process are also easily obtained.  We define 

the price at time t as the price associated with the most recent transaction and denote it by 

( ) ( )( )N tp t p t= .  The instantaneous mean and variance of the price change at time t can 

be conveniently expressed using the counting function N(t) as follows: 

 

(4) ( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )0 all y

( ), ,
lim ,

N t N t

N t N tt

E p t t p t N t y t
t y y t t

t
µ θ

∆ →

+ ∆ −
= = −

∆ ∑  

and 

(5) ( )
( ) ( ) ( ) ( ){ }2 ( ) ( )

2

0

( ) ( ) ( ), ,
lim

N t N t

t

E p t t p t t N t y t
t

t

µ
σ

∆ →

+ ∆ − −  
=

∆
 

                      ( ) ( )( )22
( ) ( )

all y

,N t N ty y t t tθ µ= − −∑  

The instantaneous moments conveniently characterize the evolution of the price process.  

All else equal, the magnitude of the instantaneous mean and variance will be larger when 

the probability of a transaction is higher.   

 Engle and Russell (1998) propose the Autoregressive Conditional Duration 

(ACD) model for q(⋅) and find the model performs well for transactions data.  A wide 

range of empirical studies have now compared various specifications of this general ACD 

form.   See for example Bauwens, Giot, Grammig and Veredas (2003).  Given an ACD 
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formulation for q(⋅) the only remaining task is to specify a model for the prices g(⋅).  We 

now focus our attention on modeling the conditional distribution of price changes g(⋅).   

 

3.  The ACM model. 

 

 Unlike their low frequency counterparts, high frequency price changes tend to 

exhibit strong and often complex temporal dependence.  Any good model for the price 

changes must therefore be flexible and capable of generating strong dependence spanning 

many transactions.  This section develops a time series model for discrete random 

variables consistent with this goal.  The model is termed the Autoregressive Conditional 

Multinomial (ACM) model.  We also establish some theoretical properties for an ACM 

model.   

 

3.1  Model Specification. 

 

 We restrict our attention to the class of observation driven models in the sense of 

Cox (1981)4.  Let k denote the number of states the multinomial random variable yi can 

take.  Let ix~  be a kx1 vector indicating the discrete price change yi. ix~  takes the jth 

column of the kxk identity matrix if the jth state occurred.  Let iπ~ denote the kx1 vector of 

conditional (on information available at time ti-1) probabilities associated with the states.  

That is, the jth element of iπ~  corresponds to the probability that the jth element of ix~  takes 

the value 1.  Clearly the conditional distribution of yi is completely characterized by iπ~ .  

A natural starting point is a Markov chain.  A first order Markov chain can be expressed 

as: 

 

                                                 
4 Many models have been suggested in the context of parameter driven models and associated hidden 
markov models.  While this literature is rich the models are often difficult to estimate and forecast.  See 
MacDonald and Zucchini (1997) for a recent survey.  Relatively little work has been done on discrete 
valued observation driven models.  Jacobs and Lewis (1983) pursued a class of models for discrete valued 
time series data called DARMA models.  These models often have unrealistic properties such non-negative 
autocorrelation restrictions.  Furthermore, these models appear better suited for marginally Poisson, or 
Binomial data.  The model proposed here is applicable to multinomial data. 
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(6) 1
~~

−= ii xPπ  

 

where P is a kxk transition matrix that must satisfy: 

 

a) all elements are nonnegative 

b) all columns must sum to unity 

 

In the more general setting P may be a conditional transition matrix and will vary with 

information available at period (i-1).  In this context, we can include information on 

longer lags of x~ , perhaps past values of π~  and the past arrival times of the transactions.  

An early discussion of time varying transition probabilities can be found in MacRae 

(1977), although their emphasis was on estimation when only aggregate data is available.   

 The restrictions on P are directly satisfied by simple estimators when the 

transition matrix is constant, but become quite difficult to impose in simple extensions.  

Here we propose using an inverse logistic transformation that imposes such conditions 

directly for any set of covariates5.   Let πim and xij denote the mth and jth elements of  πi 

and xi.  The log odds of the mth (m<k) state relative to the kth state is given by: 

 

(7) ( )

m

k

j
jimj

k

j
jikjmj

k

j
jikj

k

j
jimjikim

cxP

xPP

xPxP

+=

=









−








=

∑

∑

∑∑

−

=
−

=
−

=
−

=
−

1

1
)1(

*

1
)1(

1
)1(

1
)1(

~/log

~log~log)~/~log( ππ

 

 

                                                 
5 Hausman Lo and Mackinlay (1992) have proposed modeling discrete price changes using a Probit model 
with time varying mean and variance.  Their approach, however, allows for very limited dependence due to 
its markov structure and is far less flexible regarding the impact of new information on the transition 
probabilities. Since the first draft of this paper numberous interesting alternative approaches have been 
proposed in the literature. Rydberg and Shephard (2000, 2003) proposed an alternative model for discrete 
price movements, Bauwens and Giot (2003) proposed an alternative competing risk model, and Prigent et 
al (2001) have applied the two-state ACM model suggested here in an option pricing setting.  Models that 
assume continuous distributions for returns were considered in Ghysels and Jasiak (1998) and in Grammig 
and Wellner (2002).  



 10

where x is now a (k-1) dimensional vector and P* is a (k-1)x(k-1) matrix constructed from 

the log odds and cm is a scalar constant6.  Rewriting the k-1 probabilities as the vector 

π,  and defining the vector of logs of the probability ratios as ( ) ( )( )log / 1 'i i ih π π ι π= − , 

where ι  is a conforming vector of ones, we get:  

 

(8) ( ) cxPh ii += *π  

 

where P* is an unrestricted (k-1)x(k-1) matrix and c is a (k-1) vector with mth element 

given by cm.  For any values of P* and c the conditional probabilities are easily recovered 

from the logistic transformation: 

 

(9) 

*
1

*
1

*
1

exp
1 '

exp[ ]
1 'exp

i
i

i

i
i

i

P x c

P x c
P x c

π
ι π

π
ι

−

−

−

 = + −

+=
 + + 

 

 

where, again, ι  denotes a conforming vector of ones and ( )*exp P  is interpreted as a 

matrix with m,n element ( )*exp mnP .   Now, all probabilities will be positive including the 

probability of the kth state are obtained from condition b) and will sum to unity.  An 

expression for the transition probabilities is then obtained: 

 

(10) 
*

1
*

1

exp[ ]

1 exp[ ]

mn m
mn k

jn j
j

P cP
P c

−

=

+=
+ +∑

 

 

and again these are all positive and have columns that sum to unity. 

We now consider generalizing (8) to allow for a more elaborate dynamic structure 

with dependence on a richer information set than just the most recent price movement.  In 

                                                 
6 Tildes on vectors denote a k dimensional vector and, unless otherwise specified, vectors without a tilde 
denote (k-1) dimensional vectors. 
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doing so, it is clear that we are generalizing the transition matrix in (2) from a time 

invariant transition matrix to one that varies over time.   

 

Definition 1:  An Autoregressive Conditional Multinomial model of order (p,q) is 

given by: 

(11) ( ) ( ) ( )
1 1

p q

i j i j i j j i j i
j j

h A x B h zπ π π χ− − −
= =

= − + +∑ ∑  

 

where ( )⋅h  is the inverse logistic function.  Aj and Bj denote the jth (k-1)x(k-1) parameter 

matricies. zi is an r+1 dimensional vector with 1 in the first element forming a constant 

and r other explanatory variables.  χ  denotes a (k-1)x(r+1) conforming matrix of 

parameters.   These explanatory variables may contain predetermined variables such as 

characteristics of past trades including volume or spreads or, as of interest in our 

application, the vector z may include information about the timing of trades.  The terms 

( )iix π−  form a martingale difference sequence characterizing the new information 

associated with the ith transaction7.   

 Clearly, (11) can be interpreted as specifying dynamics for the conditional log 

odds for all states with respect to a base state and therefore specifies the dynamics of the 

conditional log odds for all pairs of states. It follows that the specification in (11) 

completely describes the transition probabilities and hence the dynamics of the 

multinomial random variable yi.  The linear structure of (11) implies that the choice of the 

base state is arbitrary.  This is easily verified since parameters for the choice of any base 

state can be expressed as an exact function of the parameters of any other choice of base 

state.   

From (11) it is immediately apparent how the history impacts the transition 

probabilities. The structure of this equation is recursive.  At the time of the i-1 

transaction, knowing all past x and π gives from (9) a calculated value of the next π.  

Consequently, subject to some starting values, the full sequence of transition probabilities 

π can be constructed from observations on x.  This allows evaluation of the likelihood 
                                                 
7 Shephard (1995) considers generalized linear autoregressive time series models in the same spirit as (7).  
This paper can be referenced at http://www.nuff.ox.ac.uk/economics/papers/index1995&4.htm 
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function and its numerical derivatives.  It can now be seen that the first (k-1) conditional 

probabilities are easily recovered from 

 

(12) 
( ) ( )

( ) ( )
1 1

1 1

exp[ ]

1 ' exp[ ]

p q

j i j i j j i j i
j j

i p q

j i j i j j i j i
j j

A x B h z

A x B h z

π π χ
π

ι π π χ

− − −
= =

− − −
= =

− + +
=

+ − + +

∑ ∑

∑ ∑
 

   

The kth probability is determined by condition b). Hence the transition probabilities are 

given by πi and the conditional covariance matrix of x can be defined as  

 

(13)  ( )( ) { }1| , 'i
i i i i i iV V x x z diag π π π−≡ = −  

 

We now turn to some theoretical properties of the model.  For illustrative purposes 

consider the ACM(1,1) model when p=q=1 and r=0 so that zi is simply a constant 

denoting the intercept.  When the eigenvalues of B are distinct and lie inside the unit 

circle, we can rewrite the ACM(1,1) model as: 

 

(14) ( ) ( ) ( ) 11 1

1

j
i i j i j

j

h P P A x I Bπ π χ
∞

−− −
− −

=

= Λ − + −∑  

 

where B= PΛP-1 and Λ is the diagonal matrix with the eigenvalues of B along the 

diagonal.  Since the ( )iix π−  form a martingale difference sequence the dynamics of the 

ACM model are easily understood from (14).  The impact of past information is 

determined by A while the decay of past information is determined by the eigenvalues of 

B.  Generalizing (14) to an ACM(p,q) we can construct bounds for the transition 

probabilities determined by the parameters of the ACM model.  These results are 

summarized in the following theorem. 
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Theorem 1:  Consider the ACM(p,q) model given by (11) with r=0 (denoting a constant 

term only) and let the Ai (i=1,…,p) and Bj (j=1,…,q) be of full rank.  Let 1−kI denote the 

k-1 dimensional identity matrix.  If all the values of z satisfying  

0...2
211 =−−−−−

q
qk zBzBzBI  lie outside the unit circle, then the elements of πi are 

strictly positive. 

Proof:  See appendix B. 

 

Corollary 1: Under the conditions of theorem 1, yi is irreducible meaning that regardless 

of the initial condition, every state will be visited infinitely often as i→∞.  Furthermore, y 

is aperiodic in the sense that the minimum recurrence time is one period.  

Proof:  This follows trivially from Theorem 1 and the fact that k is finite.  

 

Corrollary 1 insures that in the long run all states will be visited infinitely often and that 

the transition matrix will always be fully saturated, that is, any state is attainable 

regardless of the sequence of preceding price moves.  It would seem that any good model 

for the transition probabilities of transaction prices should have these properties8.    

 

3.2 Estimation and Diagnostics for the ACM model.  

 

 Given initial conditions, the entire path of πi can be constructed.  Hence the 

likelihood can be constructed as the product of the conditional densities.  Letting ijπ  

denote the jth element of πi the log likelihood is then expressed as: 

 

(15) ( )( ) ( )∑ ∑∑
= ==

′==
N

i

N

i
ii

K

j
ijij xxL

1 11

~log~~log~ ππ  

 

For a general ACM(p,q) model the derivatives of the log likelihood take a recursive form 

analogous to those of GARCH models.  We therefore propose estimating the model by 

                                                 
8 We note that Theorem 1 does not necessarily provide sufficient conditions for stationarity of the 
transaction price process.   
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maximum likelihood using a numerical optimization algorithm such as Berndt, Hall, Hall 

and Hausman (1974) (BHHH).  Under the usual regularity conditions, we will obtain 

consistent asymptotically normal parameter estimates.  

 Model diagnostic tests are suggested by considering the sequence of errors 

 

(16) iii xv π−=* . 

 

This sequence should form a heteroskedastic martingale difference sequence where the 

conditional variance covariance matrix is given by iV  in (13).  Standardized errors are 

constructed by pre-multiplying *
iv  by the Cholesky factorization of the conditional 

variance covariance matrix. The standardized errors are given by: 

 

(17) IUVUvUv iiiiii ==   where*  

 

Now, νi should be uncorrelated with the past and have a variance covariance matrix equal 

to the (k-1) identity matrix. Moreover, νi should be uncorrelated with the filtration of 

price moves and any information in zi.  Given parameter estimates we can construct the 

series of standardized residuals iv̂ , the sample counterpart to (17). Tests can then be 

performed to check if iv̂  is uncorrelated.  The sth sample cross correlations associated 

with the standardized residuals are calculated by 

 

(18)         ˆˆ
)1(

1
1

∑
+=

−′+−
=

N

si
siis vv

sN
P  

 

A formal test of the null hypothesis that the elements of the standardized vector are white 

noise can be done with a multivariate version of the Portmanteau statistic. Li and 

McLeod (1981) propose a test based on the statistic 

 

(19) ( )∑
=

′=
M

s
ss PPTraceNQ

1
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This test statistic will be distributed as a chi-squared with (k-1)2*M degrees of freedom.   

 

3.3 Symmetry in Price Dynamics 

 

In this section we propose some parameter restrictions for the general ACM(p,q) 

model.  Harris (1990) provides a detailed discussion of the effects of price discreteness 

on estimates of autocorrelations (and the variance) calculated from the observed return 

series.  The cornerstone of Harris’ work is the idea that the observed transaction price is 

the “true” price of the asset plus an upward (downward) departure for buyer (seller) 

initiated trades rounded to the nearest tick.  Harris assumes that the arrivals of buyers and 

sellers can be described by an iid Bernoulli with constant probability .5.  If order flow is 

correlated, as suggested in Hasbrouck (1991), analysis of the effects of discreteness on 

the price dynamics becomes much more complicated.  In the presence of (unobserved) 

time varying risk the magnitude of departures of the observed price from the efficient 

price may also be time varying, further complicating any analysis of the price dynamics.  

In this more realistic setting we have little theory to guide us in determining the dynamics 

of discrete bid and ask prices. 

Nevertheless, there is a particular type of symmetry that we might expect in the 

dynamics of the price movements. This hypothesis is most easily understood by 

examining a simple special case.  Consider the simple 2-state time invariant markov 

model given in (6).  Let state 1 denote a downward price movement and state 2 an 

upward price movement and let pij denote the i,j element of P.  Our symmetry hypothesis 

restricts  p12=p21 and p11=p22.  These restrictions impose that the probability of a price 

continuation is the same regardless of whether the price is moving up or down.  Similarly 

the probability of a price reversal is the same regardless of whether the price moved up or 

down.  Following state 1 the conditional distribution is [ ]′2111 pp  and, imposing the 

restrictions above, the conditional distribution following a downward price movement is 

given by [ ]′1121 pp .   The restrictions imply that the conditional distribution following an 
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upward (downward) price move is the mirror image of the conditional distribution 

following a downward (upward) price move, and vice-versa.   

 We now generalize the symmetry hypothesis beyond the simple first order 

markov model and to more than just two states.  Define the matrix Q to be a rotated 

identity matrix: 

(20) 
0 1

1 0

 
 =  
  

Q  

The elements of a conforming vector are reversed when pre-multiplied by Q.  Arrange xi 

in the natural ordering with the first element corresponding to the extreme down price 

move and the last element corresponding to the extreme upward price move.  The zero 

price move is taken to be the base state given by the zero vector.  We define the mirror 

image history by Qxi-1, Qxi-2,….   That is, upward price movements become downward 

price movements of equal magnitude in the mirror image.  For a general k-state model 

with (k-1)/2 upward price movement states, and corresponding (k-1)/2 downward price 

movement states we make the following definitions:  

 

Definition 2:  An nxn matrix W is response symmetric if for the nxn matrix Q defined in 

(16) WQQW = .  That is, Q and W commute.   

 

Definition 3:  A vector w is symmetric if wQw = . 

 

Definition 4:  For an ACM(p,q) model we say the transaction price process is dynamic 

symmetric for prices if all Ai and Bi are all response symmetric matricies.  

 

Definition 5:   For an ACM(p,q) model we say the transaction price process is dynamic 

symmetric for the jth element of zi if the jth column of χ   is a symmetric vector.   

 

In this case, the marginal impact of a dynamic symmetric element of z on the log odds is 

the same for price moves of equal but opposite direction. 
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Proposition 1:  If an ACM(p,q) model is dynamic symmetric for prices and elements of 

Z then ( ) ( )1 2 1 2, , ... , . , ...i i i i i i i iQ x x z Qx Qx zπ π− − − −= .   

Proof is in Appendix B.   

 

When xi arranged in its natural ordering then the conditions of Proposition 1 imply that 

the mirror image history of price changes will produce the mirror image transition 

probabilities.  When the ACM model is dynamic symmetric for prices but not for all 

elements of z there is a remaining symmetry in the marginal impacts the past price 

changes on the log odds of the transition probabilities.    

Proposition 2:  Let Hs denote a matrix with m,n element given by 
nsi

im

dx
dh

,−

 where m and n 

denote the mth and nth element of h and x respectively.  If an ACM(p,q) model is dynamic 

symmetric for prices then Hs is a response symmetric matrix for all s>0.     

 

Proof is in Appendix B. 

 

The implications of proposition 2 are most easily understood by returning to the simple 2 

state model described above.  Proposition 2 says that the marginal impact of a down tick 

on the log odds of a subsequent uptick is identical to the marginal impact of an uptick on 

the log odds of a subsequent downtick.  Similarly the marginal impact of an uptick on a 

subsequent uptick is identical to the marginal impact of a downtick on a subsequent 

downtick.  If an ACM(p,q) is dynamic symmetric for prices and the constant is a 

symmetric vector, then the number of parameters is reduced from 

( ) ( ) ( )( )1 1 1k k p q− + − +  to ( ) ( )( )1
1

2
k

k p q
−

+ + or almost by half.  Clearly this 

restriction can be tested in practice.  

 A final model restriction that we consider is to set off-diagonal elements of all Bj 

to zero.  Under this assumption the partial derivative of the log odds with respect to a unit 

shock will decay at a geometric rate determined by the diagonal elements of the Bj.  Thus 

the impact of new information is generously specified while the long run decay is more 

parsimoniously formulated. We refer to this restriction as the diagonal specification.   
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4.  Data and Estimation 

 

In this section we provide a description of the financial transaction data and consider 

estimation and diagnostic tests of an ACM-ACD model.  Tests for the symmetry 

hypothesis discussed in section 3.3 are also presented.  Upon finding a good 

representation for the data, the nature of dependence between transaction price changes 

and durations is analyzed.  Our findings are related to predictions obtained from existing 

market microstructure theory.   We begin with a more detailed discussion of the data.   

 

4.1 Data. 

 

 The number of transactions per day varies greatly from stock to stock.  For 

example, IBM may experience 10,000 transactions in a single day (or about a trade every 

2 or 3 seconds) while other stocks trade very infrequently often going an entire day 

without any transactions occurring.  We try to strike a balance in this application by 

selecting a stock that trades about once every 3 minutes on average.  This trading 

frequency provides a large number of transactions per day, but remains tractable enough 

to analyze one complete year of data.  The stock analyzed is Airgas (ticker symbol ARG).  

This is the first stock alphabetically in decile 8 of the stocks examined by Engle and 

Patton (2003).  Their selection was based on trade frequency during the previous year, 

with decile 10 as the most frequently traded stocks.    The data used in this paper were 

abstracted from the TAQ (Trades and Quotes) data set distributed by the NYSE.   

Over the one year period January 1999 to December 1999 there were 21,837 

transactions.  The average transaction price for the sample is $10.44.  The minimum price 

change for ARG during this period is 1/16th of a dollar.  Following Engle and Russell 

(1998) we omit the first half hour of trades since some of these will contain trades 

recorded during the opening batch auction.  We also delete overnight price changes 

leaving a sample of 18,573 transactions of which 61.72% of the transaction prices are 

unchanged from their previous value.  The distribution of transaction price changes is 

roughly symmetric with 16.20% and 16.36% down one tick and up one tick respectively.  
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Down and up two ticks occurred with 2.60% and 2.39% frequency respectively.  

Downward moves greater than two ticks occurred with frequency 0.30% and upward 

moves greater than two ticks occurred with frequency 0.41%.  A histogram of the 

transaction price changes is presented in Figure 2 and the raw frequencies are given in 

appendix C.    

 Given the sparseness of the data beyond two tick moves we use a five-state 

model.  The two extreme states therefore include upward price movements of 2 or more 

ticks and downward price movements of 2 or more ticks.  We use the natural ordering for 

the state vector given by: 

  

[ ]
[ ]
[ ]
[ ]
[ ]

1,0,0,0  if  -2 ticks 

0,1,0,0  if  1 tick

 = 0,0,0,0  if  =0

0,0,1,0  if  1 tick

0,0,0,1  if  2 ticks

i

i

i i

i

i

∆p

∆p

x ∆p

∆p

∆p

′ ≤
′ = −

 ′

 ′ = +
 ′ ≥ +


 

The state vector provides an interesting perspective from which to view the 

dynamics of the transaction price changes.  Using the  multivariate summary 

methodology initially proposed by Tiao and Box (1981) the intertemporal cross 

correlations of the state vector are presented in matrix form with the correlations replaced 

by the symbols “+”, “-“, and “⋅”.  If the price changes were i.i.d., an asymptotic 95% 

confidence interval would be given by 1.96*N-1/2.  A dot indicates that a correlation does 

not exceed this 5% significance level.  Plus and minus signs indicate positive and 

negative exceedences respectively.   

Denoting the sample mean of xi by the k-dimensional vector x , the sth sample 

cross correlation matrix is calculated by  

 

(21) ( )( )      
)1(

1 where
1

1
0

∑
+=

−

−
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=
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The Tiao Box plot for the state vector temporal correlations up through lag 15 is given in 

Figure 3.  The i,j element of the sth matrix gives the correlation of state i with state j 

lagged s periods.  The upper right and lower left quadrants correspond to price reversals.  

The upper left and lower right quadrants correspond to price continuations.  For s=1 the 

cross correlations are generally positive in the upper right and lower left quadrants and 

negative in the upper left and lower right quadrants indicating that price reversals are 

more likely to occur than price continuations immediately after a price move.   The 

transaction price "bounces" back and forth between buy and sell prices generating 

negative autocorrelation in transaction price changes and the observed positive signs 

associated with the price reversals.  This is often referred to as bid-ask bounce. 

 Beyond the first lag, the significant correlations are generally positive.  

Significant elements tend to occur most often in the corners of the matrix and sometimes 

in the center.  This pattern implies that large price changes (of 2 ticks or more) tend to 

follow large price changes of either direction and small price changes tend to follow 

small price changes of either direction.  This pattern is an expression of volatility 

clustering in the discrete price moves.   

 Finally, we notice a particular symmetry in the correlations.  For many of the 

correlations, the signs of the correlation reflected through the origin are the same.  If the 

symmetry conditions discussed in section 4 are satisfied, this is the exact pattern the 

correlations should display.  The symmetry condition will be formally tested later in this 

section. 

 The time intervals between trades are known to contain a periodic U shaped 

pattern throughout the trading day.  Durations tend to be shortest in the morning just after 

the open and in the afternoon just prior to the close.  Intraday volatility also exhibits a 

similar periodic pattern although this pattern is typically examined using price data 

observed over fixed time intervals9.  We examine the state vector xi to check for any 

evidence of these diurnal effects in the distribution of transaction by transaction price 

movements.  In doing so patterns in the variance or any other moments of the price 

changes may be detected if present.  We treat each of the four elements of xi as a 

                                                 
9 See, for example Engle and Russell (1998) for diurnal patterns in durations and McInish and Wood 
(1992) for an early analysis of volatility periodicity. 
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univariate time series and fit by least squares a linear spline in the time of day.  Nodes are 

placed at each hour of the trading day and the spline is restricted to be continuous.  The 

result for the jth series is an estimate of the probability that state j occurs at any point 

during the day.  This parallels the two-step procedure used to estimate deterministic 

patterns in Engle and Russell (1995).  If there are no diurnal effects, the coefficients 

should be zero with only the intercept non-zero.  An F-statistic is provided to assess the 

null hypothesis that there are no diurnal effects.  The estimates for the time of day effects 

for each price change state as well as for the durations are given in Table 1.  For each 

regression, dj denotes the jth spline coefficient estimate.   

 From Table 1 we see that the durations tend to be shortest near the open and close 

of the market and longest in the middle of the day - this is the inverted U-shape typically 

observed.  The p-value for the null hypothesis of no time of day effects is near zero and 

the hypothesis is easily rejected for the durations.  Alternatively, the price changes do not 

exhibit any indication of periodicity.  The coefficients appear random with no real pattern 

and all are insignificant.  The p-value for the null of no time of day effects is large for all 

of the price states.  The smallest p-value is for state 1 (down 2 or more ticks) which has a 

p-value of 6.43%.    

 It is interesting not to find evidence of a deterministic pattern in the transaction by 

transaction price dynamics and, in particular, no pattern in the magnitude of the price 

changes since periodicity in volatility patterns is well documented for intraday prices 

measured in fixed time intervals. This suggests that the time of day patterns discovered 

for volatility using within-day fixed-interval analysis are driven by time of day patterns in 

the transaction rates rather than the magnitude of transaction by transaction price 

changes.  This result is similar in spirit to findings reported in Ane and Geman (1999) 

and Jones Kaul and Lipson (1994).  These studies, however, focus on the role played by 

the random number of transactions in directing the stochastic component of volatility.   

 Since the durations exhibited strong intraday deterministic patterns we follow the 

two step procedure discussed in Engle and Russell (1995) by first partialing out the 

deterministic pattern by taking the durations and dividing by their expectation based on 

time of day alone.  The expectation is obtained from the splines in Table 1.  The resulting 

series will have an unconditional mean near 1 and should be free of any deterministic 



 22

patterns.  We will simply refer to this series in what follows as the durations.  We now 

turn to the specification and estimation of the ACM-ACD model.   

 

4.2  Specification and Estimation 

 

This section provides a specific parameterization for the ACM and ACD models that will 

be estimated using the ARG data.   

 We consider the following specification for the ACM model: 
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where χj is a (k-1) parameter vector.  Clearly we have taken 

( ) ( ) ( )1 11 ln ln lni i i- i-rz , t , t , , t +
′

= …     so that the ACM model now depends on the log of 

the contemporaneous duration as well as the first (r-1) lags of the log duration.  Since the 

log of the probability appears on the left hand side it seems natural to take logs of the 

durations that appear on the right hand side.  

 The dynamics for the durations are assumed follow an ACD model.  An ACD 

model is characterized by 1) ( )1|i i iE Iψ τ −=  where Ii is an information set available at 

time ti and 2)  i
i

i

τ ε
ψ

=  is iid.  In our analysis we assume an exponential distribution for ε  

and the following form for ψ : 
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This specification differs from the original application of the ACD model in that the log 

of the expectation appears on the left-hand side.  Additionally, it is the "innovation" εi 

and past values of the logged expectation that appears on the right hand side.  Those 

familiar with the exponential GARCH model of Nelson (1991) will recognize the 
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connection and we therefore refer to this model as the Nelson-form  ACD model10.  The 

Nelson-form ACD model is useful because it automatically insures that the conditional 

expectation of the duration is non-negative even in the presence of additional explanatory 

variables such as the past price changes.  The ACD dynamics also depend on the first w 

lags of both the past price change and its square.  Clearly durations can now depend on 

both the direction and the magnitude of past price changes.  The conditional density 

function associated with the ith duration is then given by: 

 

(24) ( ) ( )( )1 1 1, expi i i
i

i i

q y ττ τ
ψ ψ

− −  
= − 
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Estimation of the ACD and ACM parameters can be performed by separately 

maximizing the two log-likelihoods or by joint estimation of (1) although there may be a 

loss of efficiency if estimation is performed separately.  Clearly, maximizing the log of 

the joint likelihood in (1) is obtained by maximizing the sum of the ACM log likelihood 

given in (15) and ( ) ( )( )( )∑
=

−−
N

i

ii
i yq

1

11 ,log ττ  where ( ) ( )( )1 1,i i
iq yτ τ− −  is given by (23) and 

(24).  In our work we perform joint estimation using the BHHH algorithm.   

The dynamic structure of price changes associated with the closing transaction 

one evening and the opening transaction the next morning is unlikely to have the same 

dynamic structure as two consecutive trades within the same day.  We therefore 

reinitialize lagged variables at the beginning of each day to their unconditional mean.  

The martingale terms in the ACM model is set to zero and the innovations in the ACD 

model are set to one at the start of each day.  The lagged values of h and ln(ψ) at the 

beginning of each day are treated as parameters to be estimated although in interest of 

parsimony we restrict them to be the same across days.  

 We impose the diagonal structure for the B matricies but initially do not impose 

any of the symmetry conditions discussed in section 3.3.  In the interest of conserving 

space we do not present results for all estimated models.  An ACD(2,2) model often 
                                                 
10 Models of this form are advocated in Bauwens and Giot (2000) who refer to it as a log-ACD2 model, and 
applied in Engle and Lunde (2003).  See Bauwens, Galli, and Giot (2002) for a discussion of the theoretical 
properties of this model.   
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provides a very good starting point for modeling durations and we begin by jointly 

estimating an ACM(2,2)-ACD(2,2) model given by (21) and (22) with r=w=2.  We then 

test if the ACM(2,2) model is sufficient or if a higher order model is needed.  The 

likelihood ratio test strongly rejects the null of an ACM(2,2)-ACD(2,2) in favor of an 

ACM(3,3)-ACD(2,2) model with a p-value value is 6.7x10-5.  The ACM(3,3)-ACD(2,2) 

model, however, is not rejected for the ACM(4,4)-ACD(2,2) model with a p-value of .29.  

Further diagnostics suggest that no additional lags of the duration are needed in the ACM 

specification.  Similarly, we also find that no additional lags of prices are needed in the 

ACD specification.  The parameter estimates for the ACM(3,3)-ACD(2,2) with r=m=2 

model are given in Table 2.  Standard errors of the estimates are given in parenthesis.   

Before discussing the parameter estimates we examine the model diagnostics.  As 

discussed in section 3.2 the standardized residuals should be temporally uncorrelated.  

Figure 4 presents the correlations constructed for the standardized residuals given in (17).  

We again denote significant (at the 5% level) correlations with a “+” or “-“ indicating the 

sign.  The strong correlations at lag 1 have vanished.  Furthermore, the long sets of 

positive correlations in the raw series have also disappeared.  A formal test for the null 

hypothesis that the standardized series is white noise can be obtained from the test 

statistic in (19).  The p-value is .31 providing no evidence of remaining correlation.  The 

one-step ahead prediction errors associated with each state are not correlated with past 

errors indicating that the model is well specified.   

Engle and Russell (1998) suggest using the standardized durations, given by 

ˆ
i

i
i

e τ
ψ

= , to asses the fit of the ACD model.  Under correct specification this series should 

be distributed as an iid unit exponential.  The Ljung Box test for the null hypothesis that 

the series is uncorrelated through the first 15 lags has a  p-value of .11.  The variance of 

the series indicates some remaining excess dispersion, however.    

 

4.2 Interpretation of Results and Hypothesis Tests 

 

 We now turn to the interpretation of the results.  We begin by summarizing the 

parameter estimates and testing the symmetry conditions suggested in section 3.3.  
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Finally we provide a detailed discussion of the nature of dependence between price 

changes and the durations implied by the model estimates.  This relationship is related to 

market microstructure theories proposed in the literature.   

 The sum of the jth diagonal elements of the Bi matricies of an ACM model 

characterize the persistence associated with the jth state.  This persistence measure is 

similar across all states with states 1&5 summing to 0.874 and 0.876 respectively and 

states 2&4 suming to .803 and .88 respectively.   The impact of the contemporaneous and 

lagged durations on the jth price transition probabilities are given by 1jχ  and 2jχ  

respectively.  The coefficients on the contemporaneous duration are positive and 

significant for all 4 states.  Since the log odds is taken with respect to the base state of no 

price change this indicates that the probability of a price move increases with the 

duration.  These estimates imply that the timing of transactions and the distribution of 

transaction by transaction price changes are related.  We will investigate this relationship 

later in this section.   

Further examination of terms in the A and B matricies reveals structure.  In 

particular, for each A and B matrix, row 5 is roughly the reverse, or mirror image of row 

1.  Similarly, row 4 is roughly the reverse, or mirror image of row 2.   This is exactly 

what we should expect to find if the price symmetry hypothesis discussed in section 3.3 

holds.  We now proceed to test several hypothesis of symmetry.   

We first consider a test for dynamic price symmetry by jointly testing that the A 

and B matricies are all response symmetric.  The likelihood ratio test associated with the 

null hypothesis for the A and B matricies, is marginally not rejected at the 5% level with a 

p-value of .058.  Hence we are unable to reject symmetry in the marginal impact of the 

past price changes on the future log odds.  We are also unable to reject that the constant 

vector c is symmetric.  The p-value for this likelihood ratio test 0.39.  However, we 

strongly reject the null hypothesis that the coefficient vectors on the durations 1χ  and 2χ  

are symmetric vectors; the p-value is 1.05x10-3.  The parameter estimates for the price 

symmetric model with symmetric intercept but asymmetric duration impact are presented 

in Table 3.    

The coefficients on the contemporaneous duration associated with the downward 

price moves are larger than those associated with upward price moves.  Hence the 
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probability of a downward price move increases more than the probability of an upward 

price move as the elapsed time since the last trade increases.  Short elapsed time since the 

last transaction is associated with rising prices and long elapsed time since the last 

transaction is associated with falling prices.  

 We now examine the relationship between the transaction price change and the 

elapsed time.  Given the filtration of past price changes and durations the variance of 

transaction price changes can be expressed conditionally as a function of the 

contemporaneous duration given a duration τ.  We plot the transaction price variance as a 

function of τ fixing the lagged values at their unconditional means and evaluating the 

conditional variance of price changes obtained by varying the contemporaneous duration.  

This plot is given in Figure 5.   The variance is an upward sloping function of the 

contemporaneous duration.  For reference, each standardized unit of time is, on average, 

a little over 3 minutes.  It is interesting to compare the conditional variance to the 

variance obtained when the log stock price follows a random walk.  We calculate the 

variance of the open to close returns.  The variance per unit of standardized time implied 

by Brownian motion is then calculated.  The upward sloping line in Figure 5 is the 

Brownian motion variance as a function of the standardized time interval which is linear 

in elapsed time.  We convert from the variance of returns to variance of price changes by 

multiplying by the square of the sample average price.   

We might expect that the conditional transaction price variance should be larger 

than the Brownian motion variance since the transaction price process includes both the 

variance of Brownian motion and market microstructure effects such as price discreteness 

and other transitory effects.  Even very short durations may result in a price change equal 

to or greater than the minimum tick size.  Indeed, for very short durations the conditional 

variance from the ACM model is much higher than that implied by Brownian motion.  

What is interesting, however, is that the volatility is a concave function of the duration τ 

with slope becoming smaller than that of the Brownian motion, so that the variance per 

unit time declines with duration.  For short duration trades the variance is above that of 

the Brownian motion volatility and for long duration trades it is below.    

This analysis shows that for the Airgas stock, the timing of trades and not merely 

the passage of time affects volatility.  This relationship is predicted by theoretical models 
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where time varying transaction rates are driven by discretionary informed traders that 

only trade when they posses superior information  For an early reference see Easley and 

O’Hara (1992).  In these models, the price adjustments, and hence volatility, will be 

larger in periods of frequent trading and smaller when trades are infrequent.   

Figure 5 also presents a plot of the expected transaction price change given a 

duration τ and the filtration of past price changes obtained using the same method as for 

the variance.  The conditional mean is a downward sloping function of the time since the 

last trade.  This result is in the same direction and much more significant than the mean 

effect found in Engle (2000)11.  The fact that long durations are associated with falling 

prices is consistent with the theoretical model of Diamond and Verrecchia (1987) who 

suggest that in the presence of short selling constraints periods of infrequent trading are 

indicative of bad news.  Agents that posses bad news about the asset and would like to 

short the asset may be unable to do so given short selling constraints.  

The coefficient on the lagged duration is negative for all states.  For the 2-tick 

price moves (states 1 and 5) the coefficient on the lagged duration is larger in magnitude 

than the coefficient on the contemporaneous duration.  All else equal, the net effect of a 

long duration beyond one period is to decrease the probability of a large price change.  

The coefficient on the lagged duration is slightly smaller in magnitude for the one-tick 

price moves.  The net effect of a long duration beyond one period is to slightly lower the 

probability of a one tick move.  Long durations increase the probability of 

contemporaneous price moves but have a slight tendency to decrease the probability of 

price moves expected multiple periods ahead.   

Examining the coefficients associated with the ACD model we find both lag one 

coefficients of the price change and its square are negative and significant indicating that 

durations are expected to be shorter following upward price moves and/or larger price 

changes.  This effect is partially offset by the lag two coefficients that are positive and 

significant for both the price changes and squared price changes.   

                                                 
11 In a previous version of the paper we found similar evidence of falling prices associated with longer 
durations for 3 months of IBM data from the TORQ data set.  
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5.  Conclusion 

 

This paper proposes modeling financial transactions data as a marked point 

process where the points are the transaction times and the associated marks are 

information about the transaction such as the price.  We propose decomposing the joint 

density of arrival times and price changes into the product of a conditional distribution 

for the price changes and a marginal distribution for the arrival times.  Institutional 

features restrict prices to fall on discrete values.  For our sample the overwhelming 

majority of the price changes take one of just 5 different values.  We therefore treat the 

price changes as a multinomial random variable and propose an autoregressive model for 

the price transition probabilities.  Some theoretical properties of the Autoregressive 

Conditional Multinomial (ACM) model are examined.  The ACD model of Engle and 

Russell (1998) is used for the marginal distribution of the arrival times. 

We find little evidence of time of day effects in the distribution of transaction by 

transaction price for the stock analyzed.  This has the interesting implication that the time 

of day patterns typically observed in within day volatility measured over fixed time 

intervals is an artifact of the diurnal patterns in the transaction rate.   

The joint ACM-ACD model is estimated by maximum likelihood.  A simple to 

general model selection approach suggests that moderately simple models appear 

adequate.  This modeling approach provides us with a microscopic view of the intraday 

dynamics of asset prices.  For the NYSE stock analyzed, we test for and find evidence of 

a type of symmetry in the marginal impacts of the history of price changes on the 

transition probabilities.   

We find that the transaction price variance increases with the duration but at a 

slower rate than would be implied by simple geometric Brownian motion.  In fact, the 

variance is virtually constant after a length of time equal to the mean duration has passed 

since the last transaction.  This is consistent with predictions from Easley and O’Hara 

(1992) where the absence of transactions is indicative of no private information in the 

market and slow adjustment of prices.  Conversely, rapid transactions are associated with 

the presence of informed trading so prices adjust quickly.   
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We also test for and find that long durations are associated with falling prices.  

This result is consistent with the theoretical predictions of Diamond and Verrecchia 

(1987) where short selling constraints suggest that long durations are indicative of “bad 

news”.   

We believe that the ACM-ACD model may provide a useful tool for analyzing 

other discrete, potentially irregularly spaced data such as credit risk dynamics or 

marketing data where consumers face a discrete product choice set such as different 

brands.   

Recently the NYSE and NASDQ completed its move to decimalization.  It is also 

worth noting that for many stocks the histogram of stock price changes measured in ticks 

looks remarkably similar in post decimalization transactions data.  Hence there is no 

reason to think the model will not perform equally well on the current decimalized data.  

The ACD model may well provide a good approach to analyzing how these changes 

affect the transaction costs (effective cost) or price dynamics.   
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Appendix A 

 

Summary of superscript/subscript notation 

 
For the random variable y 
yi   denotes the random variable associated with transaction i.  

( ) ( ),..., 21
1

−−
− = ii

i yyy  
 
For a random vector w 

iw   denotes a vector associated with transaction i 

ijw  denotes the jth element of a vector associated with transaction i 
Unless otherwise specified, vectors with tildes have dimension k and vectors without 
tildes have dimension k-1.  
 
 
For a matrix W 
Wj  denotes the jth matrix 
Wmn  denotes the m,n element 
 
 
For a constant vector c 
cm  denotes the mth element. 
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Appendix B 
  

Proof of Theorem 1 

 

The ACM(p,q) model with a vector of constants χ is given by: 

(1') ( ) ( ) χππ +−



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


=








− ∑∑

==
ii

p

j

j
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j
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Since the roots of  0...2
211 =−−−−−

q
qk zBzBzBI  lie outside the unit circle then we can 

write: 

(2') (2')  ( ) ( ) *

1
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=
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*
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m
mBI  and  ∞<Ψ∑

∞

=1m
m .   

Ψ  is element by element absolute value.  Next, note that the elements of i ix π−  must lie 

between zero and one inclusive so it follows: 

(3') ( ) ( ) ( ) ∞<+Ψ≤+−Ψ≤+−Ψ≤ ∑∑∑
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j
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where ι  is a k-1 vector of ones.  So h(πi) is bounded.  Bounds on the probabilities are then 

obtained by setting   
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where the exponential function is understood to be element by element.  Since the probabilities 

are given by the logistic transformation it follows that that the elements of πi are bounded strictly 

away from zero. 

(5') ( ) 0
1

1 >
+′

≥ l
ui M

Mι
π  
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Proof of Proposition 1 

(6') ( ) ( ) ( ) i

q

j
jij

p

j
jijiji ZQhQBxQAQh χπππ ++−= ∑∑

=
−

=
−−

11

.  

From the symmetry assumptions it follows that  

(7') ( ) ( ) ( ) i

q

j
jij

p

j
jijiji ZQhBxQAQh χπππ ++−= ∑∑

=
−

=
−−

11

.  

So, given fixed initial conditions π1,…,πp the mirror image history generates the mirror image log 

odds.  Finally, recall that the ith element of h is simply the ( )0/log ππi  so it follows that 

( ) ( )iiiiiiii ZQxQxZxxQ ,...,.,..., 2121 −−−− =ππ  

 

Proof of Proposition 2 

We must show that jΨ  of (2’) are response symmetric.   
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First notice that Q-1=Q so that 
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The last equality follows from the fact that the prices are dynamic symmetric. 

Response symmetric jΨ  then follows immediately from the response symmetry of 
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Appendix C 
 
 

Bin Freq. Percent 
-0.8125 1 0.0054 

-0.75 2 0.0108 
-0.6875 0 0.0000 
-0.625 0 0.0000 

-0.5625 0 0.0000 
-0.5 1 0.0054 

-0.4375 2 0.0108 
-0.375 1 0.0054 

-0.3125 0 0.0000 
-0.25 14 0.0754 

-0.1875 34 0.1831 
-0.125 482 2.5952 

-0.0625 3009 16.2009 
0 11463 61.7186 

0.0625 3039 16.3625 
0.125 444 2.3906 

0.1875 49 0.2638 
0.25 21 0.1131 

0.3125 4 0.0215 
0.375 1 0.0054 

0.4375 1 0.0054 
0.5 1 0.0054 

0.5625 0 0.0000 
0.625 2 0.0108 

0.6875 1 0.0054 
0.75 0 0.0000 

0.8125 1 0.0054 
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Table 1:  Estimates of the deterministic pattern for durations and states. 
 
 Const. d1 d2 d3 d4 d5 d6 F stat 

p-value 
Durations 239.30 

(11.83) 
-16.84 
(17.02) 

65.20 
(14.24) 

43.08 
(15.03) 

-41.88 
(15.10) 

-63.26 
(14.39) 

-118.25 
(17.69) 

0.00% 

Down 2 .030 
(.0053) 

-0.0034 
(.0076) 

0.0083 
(.0064) 

-0.0000 
(.0067) 

-.0153 
(.0067) 

0.00625 
(.0064) 

0.00818 
(.00795) 

6.432% 

Down 1 0.165 
(.0117) 

-.0077 
(.0168) 

.0060 
(.0140) 

-.0046 
(.0148) 

.00659 
(.0149) 

.00773 
(.0142) 

-.0292 
(.0175) 

61.3% 

Up 1 .156 
(.0117) 

.0147 
(.0169) 

-.0106 
(.0141) 

.0196 
(.0149) 

-.029 
(.0149) 

.0030 
(.0142) 

.0227 
(.0175) 

25.6% 

Up 2  .0395 
(.0052) 

-.0172 
(.0075) 

.0106 
(.0063) 

-.0042 
(.0066) 

-.0059 
(.0067) 

.0053 
(.0064) 

.0013 
(.0078) 

23.3% 
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Table 2: Parameter estimates for unrestricted ACM(3,3)-ACD(2,2) model 

            
  State 1  State 2  State 4  State 5   ACD 
 c1 -.4541 

(.0794) 
c2 -.2327 

(.0537) 
c4 -.1474 

(.0394) 
c5 -.4424 

(0867) 
 ω  -.0588 

(.0076) 
 a11 -.2955 

(.3471) 
a21 -.7524 

(.1910) 
a41 .8684 

(.1211) 
a51 2.712 

(.1439) 
 

1α  .0688 
(.0040) 

A1  a12 -.4420 
(.1763) 

a22 -.4429 
(.0731) 

a42 .9362 
(.0524) 

a52 .7013 
(.1276) 

 
2α  -.0059 

(.0085) 
 a14 .9612 

(.1153) 
a24 .9690 

(.0528) 
a44 -.4162 

(.0727) 
a54 .0023 

(.1579) 
 

1β  .8692 
(.1384) 

 a15 2.307 
(.1443) 

a25 .7599 
(.1239) 

a45 -.7185 
(.2012) 

a55 .6706 
(.2333) 

 
2β  .1086 

(.1356) 
 a11 1.178 

(.3302) 
a21 .5554 

(.1958) 
a41 -.7684 

(.1852) 
a51 -1.037 

(.3594) 
 

1ρ  -.0330 
(.0064) 

A2  a12 .5397 
(.1998) 

a22 .3341 
(.0858) 

a42 -.6031 
(.0959) 

a52 -.3378 
(1943) 

 
2ρ  .0117 

(.0067) 
 a14 -.3928 

(.1616) 
a24 -.3867 

(.0867) 
a44 .3536 

(.0958) 
a54 .2414 

(.1912) 
 

1ζ  -.0291 
(.0044) 

 a15 -.6338 
(.2643) 

a25 -.1502 
(.1648) 

a45 .6007 
(.2252) 

a55 .0663 
(.2872) 

 
2ζ  .02221 

(.0043) 
 a11 -.0323 

(.2179) 
a21 .3863 

(.1441) 
a41 .1415 

(.1454) 
a51 -.4421 

(.3243) 
   

A3 a12 -.1220 
(.1404) 

a22 -.1502 
(.1648) 

a42 -.1482 
(.0788) 

a52 -.0995 
(.1521) 

   

 a14 -.3557 
(.1393) 

a24 -.2381 
(.0746) 

a44 .1550 
(.0731) 

a54 .1022 
(.1365) 

   

 a15 -.3678 
(.2392) 

a25 -.0922 
(.1429) 

a45 .2684 
(.1476) 

a55 .3905 
(.2311) 

   

1B  b11 .7765 
(.0734) 

b22 .6879 
(.0581) 

b44 .8329 
(.0696) 

b55 .7866 
(.1155) 

   

2B  b11 .0225 
(.0838) 

b22 .1655 
(.0540) 

b44 .0698 
(.0733) 

b55 .0601 
(.1383) 

   

3B  b11 .0754 
(.0567) 

b22 -.0370 
(.0337) 

b44 -.0227 
(.0366) 

b55 .0292 
(.0735) 

   

χ  
11χ  .3155 

(.0290) 21χ  .2612 
(.0136) 41χ  .2047 

(.0133) 
51χ  .2081 

(.0305) 
   

 
12χ  -.3412 

(.0285) 22χ  -.2277 
(.0156) 42χ  -.1825 

(.0139) 52χ  -.2274 
(.0304) 
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Table 3: Parameter estimates for restricted ACM(3,3)-ACD(2,2) model 
            
  State 1  State 2  State 4  State 5   ACD 
 c1 -.4567 

.(0692) 
c2 -.2008 

(.0435) 
c4 -.2008 

- 
c5 -.4567  ω  -.0582 

(.0076) 
 a11 .2797 

(.1899) 
a21 -.7440 

(.1385) 
a41 .8161 

- 
a51 2.513 

- 
 

1α  .0689 
(.0040) 

A1  a12 -.2046 
(.1167) 

a22 -.4290 
(.0522) 

a42 .9508 
- 

a52 .8348 
- 

 
2α  -.0067 

(.0084) 
 a14 .8348 

(.0857) 
a24 .9508 

(.0380) 
a44 -.4290 

- 
a54 -.2046 

- 
 

1β  .8779 
(.1374) 

 a15 2.513 
(.1013) 

a25 .8161 
(.0871) 

a45 -.7440 
- 

a55 .2797 
- 

 
2β  -.1001 

(.1346) 
 a11 .5736 

(.2073) 
a21 .5871 

(.1466) 
a41 -.4382 

- 
a51 -.8774 

- 
 

1ρ  -.0331 
(.0064) 

A2  a12 .3973 
(.1382) 

a22 .3368 
(.0639) 

a42 -.4731 
- 

a52 -.3861 
- 

 
2ρ  .0118 

(.0067) 
 a14 -.3861 

(.1258) 
a24 -.4731 

(.0678) 
a44 .3368 

- 
a54 .3973 

- 
 

1ζ  -.0290 
(0044) 

 a15 -.8774 
(.2100) 

a25 -.4382 
(.1241) 

a45 .5871 
- 

a55 .5736 
- 

 
2ζ  .0220 

(.0043) 
 a11 .1691 

(.1588) 
a21 .3352 

(.1041) 
a41 .0115 

- 
a51 -.3360 

- 
   

A3 a12 -.0273 
(.0976) 

a22 .1683 
(.0502) 

a42 -.2114 
- 

a52 -.2104 
- 

   

 a14 -.2104 
(.1013) 

a24 -.2114 
(.0558) 

a44 .1683 
- 

a54 -.0273 
- 

   

 a15 -.3360 
(.1863) 

a25 .0115 
(.1009) 

a45 .3352 
- 

a55 .1691 
- 

   

1B  b11 .8032 
(.0632) 

b22 .7401 
(.0459) 

b44 .7401 
- 

b55 .8032 
- 

   

2B  b11 -.0028 
(.0723) 

b 22 .1315 
(.0448) 

b44 .1315 
- 

b55 -.0028 
- 

   

3B  b11 .0721 
(.0449) 

b 22 -.0327 
(.0243) 

b44 -.0327 
- 

b55 .0721 
- 

   

χ  
11χ  .3133 

(.0284) 21χ  .2584 
(.0135) 41χ  .2073 

(.0132) 51χ  .2071 
(.0301) 

   

 
12χ  -.3378 

(.0275) 22χ  -.2274 
(.0146) 42χ  -.1789 

(.0143) 52χ  -.2298 
(.0297) 
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Figure 1:  One day of transactions data. 
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b)  Transaction price changes 
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c) Number of transactions that have occurred. 
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Figure 2: Histogram of Transaction Prices 
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Figure 3:  Box Tiao Representation of Sample Cross Correlations of x 
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Figure 4:  Box Tiao Representation of Sample Cross Correlations of Standardized 
Residual Vector 
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 Figure 5.  Conditional Mean and Variance of Price Changes as a Function of Time 
Elapsed Since Previous Transaction 
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