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cated econometric models, which in turn yield increasingly subtle insights into macroeconomic and financial
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STOCHASTIC PERMANENT BREAKS
Robert E. Engle and Aaron D. Smith*

Abstract—This paper bridges the gap between processes where shocks are
permanent and those with transitory shocks by formulating a process in
which the long-run impact of each innovation is time-varying and
stochastic. In the stochastic permanent breaks (STOPBREAK) process,
frequent transitory shocks are supplemented by occasional permanent
shifts. Consistency and asymptotic normality of quasi-maximum-
likelihood estimates is established, and locally best hypothesis tests of the
null of a random walk are developed. The model is applied to relative
prices of pairs of stocks and significant test statistics result.

1. Introduction

IME-SERIES analysis tends to draw a sharp line
between processes where shocks have a permanent
effect and those where they do not. The most notable
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example of this is the distinction between stationary AR(1)
processes, where all shocks are transitory, and the random
walk. As the autoregressive root approaches one, the rate at
which shocks are expected to decay decreases, but they
remain transitory. This paper aims to bridge the gap between
transience and permanence by formulating a process in
which the long-run impact of each observation is time-
varying and stochastic. At one extreme, all innovations are
transitory; at the other, all shocks are permanent.

The concept of varying the permanent impact of shocks is
linked to the familiar topic of structural change. Whenever a
shock or part of a shock has a permanent effect, we can
interpret this as a specific type of structural break. Under this
definition, a random walk has a break every period, but a
stationary ARMA process has no breaks. Processes such as a
threshold autoregression (Tong, 1983) have no breaks. The
parameters change values, which causes the innovations to
decay at a different rate, but nonetheless they remain
transitory.

The stochastic permanent breaks (STOPBREAK) process
is motivated by a class of processes that incur random
structural shifts at random intervals. Analysis of a structural
shift when the break point is known a priori generally
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involves standard test statistics and estimators (Chow,
1960). When the break point is unknown, the problem
becomes more difficult because the break point must be
estimated and, under the null of no break, this parameter is
unidentified. Andrews et al. (1996), Andrews (1993), Han-
sen (1992), Christiano (1992), and others have studied this
problem in various contexts. When considering multiple
break points, the problem becomes further complicated
because it requires specification of the number of breaks and
inclusion of enough parameters to account for each regime.
This becomes intractable when the number of break points
becomes large.

From a forecasting perspective, the errors of finding too
many breaks and not enough breaks are very different,
resulting in either bias or imprecision. Linear moving-
average smoothers often forecast this type of data relatively
well, but they lack flexibility. We approach the problem from
a different angle, treating the breaks endogenously by
inferring their magnitude and frequency from realizations on a
single random variable. This allows the model enough flexibility
to react to breaks without overloading on parameters.

We apply the STOPBREAK model to relative prices of
pairs of stocks, conjecturing that a pair of stock prices may
move together for periods of time and jump apart occasion-
ally. They may exhibit a type of temporary cointegration. We
expect this relationship to be strongest between stocks
within the same industry, as they are likely to have more
common components in their stock price determinants.

The paper proceeds as follows. In the next section, we
introduce the process and discuss its properties and its
relation to other nonlinear time series processes. Sections III
and IV treat hypothesis testing, and section V estimation
issues. Empirical results follow in section VI.

II. STOPBREAK Process
In its simplest form, the STOPBREAK process is:

y=mte, t=0,1,...,7, )]
where €, is a stationary martingale difference sequence, and

m, is a time-varying conditional mean which is updated via

m=m_ + g€
! 2
=mo+ > Gty 1=1,2,...,T.
i=1

We assume throughout that my is fixed and known and that €
is known. Let {F,] denote an increasing sequence of o-fields
adapted to y, and let ¢, = g(€,); then m,_, = E(y,|F,-)), the
conditional mean. If the function ¢, = g(g,) satisfies E(g.€,|
F,_;) = 0, then m, is also the multiperiod forecast of y.

In addition, we assume that the function is bounded by
zero and one and that d¢/9| €| is non-negative and finite with
probability to 1 (wp 1). This formulation is based on the
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assumption that the time series is less likely to mean revert
after a large shock than after a small one. If §, = 1, then the
realized process at time ¢ is a random walk.! If §, = 0, the
conditional mean does not change and, consequently, neither
does the long-run forecast for y, Thus, we have a process
where the permanence of a shock is determined endog-
enously. For example, in the stock market, investors may
perceive large shocks as containing significant informational
content and small shocks as mere noise. Consequently, their
valuations and expectations react only to large shocks.
Biological systems may fluctuate around some constant
level of fitness with occasional mutations having large
permanent effects. An economy may be subject to sporadic
permanent supply shocks and frequent transitory demand
shocks. Technology growth and crime rates are examples of
other series that could potentially behave similarly.

In the above discussion, g is formulated as a function only
of the current innovation; however, any factor that is part of
the information set could be an argument in the function g;.
For example, for modeling stock prices, relevant variables
may include macroeconomic announcements, profit an-
nouncements, interest rates, exchange rates, and so on.
However, it is unlikely that one could account for all
potential factors that could cause a permanent shift, and,
even if it were possible, it would overload the process with
parameters.

In this paper, we take an agnostic approach, assuming
only that permanent shifts will largely be reflected in an
innovation that is larger than the norm. A model specified in
this manner may not pick up small shifts in the mean and
thus will subsequently make systematic errors until the mean
moves sufficiently. It will also be prone to overreacting to
large transitory shocks, indicating equal and opposite breaks
rather than no break. Nonetheless, we maintain that the
simplicity and flexibility of the process more than offsets
these negatives if the goal is to obtain conditional forecasts.

The STOPBREAK process can also be considered a type
of error correction mechanisin in the sense that it is
reactionary rather than anticipatory. It makes no attempt to
predict when a permanent innovation will occur, but merely
reacts to shocks by forecasting their degree of permanence.

A. Relation to Other Time Series Processes

The distinguishing feature of the STOPBREAK process is
that the permanent effect of shocks is time-varying and
stochastic. In some periods, breaks are permanent and in
other periods they are not.

DgrintTioN:  Consider some  stochastic process |yl
t=0,1,..., T The permanent effect of innovation t is
a .. Onk)
A = lim ——,
ke J€,

! Unless otherwise indicated, the notation %, will indicate a realization on
the random variable x,.
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where f(y, k) = E(ylF), & = y — E(n|F-), F,
incorporates the entire past history of |y, and £ signifies
equality in distribution. This derivative can also be inter-
preted as the derivative with respect to y,, holding all past y's
fixed.

A martingale has the property that all shocks have a
permanent effect; i.e., A, = 1 wp 1 V. Conversely, if \, =
0 wp 1 Vi, the process has no permanent breaks. Realiza-
tions, A,, between zero and one indicate partial permanent
breaks, so that some fraction of a shock is remembered. An
example is an integrated process_with a negative invertible
moving-average component. If A, < 0, we have negative
permanent breaking where the process overcorrects for
shocks, and, if A, > 1, shocks are magnified; i.e., the
permanent effect is greater than the initial effect. A linear
process with positively correlated first differences would
have A, > 1| wp | V1. A permanent break is deemed to have
occurred at time ¢ if the realized permanent impact of that
observation is nonzero; i.e., if X, # 0.

A k period ahead forecast of the STOPBREAK process in
equation (2) is

E(y,+k‘))') = My =My + q€

since E(m,.iy") = m 4. Differentiating with respect to €,
gives the permanent impact of observation ¢ as

aq
N=g +—| €
+ = 4qr de |, £

= g{1 + mgy),

where n,, = (aqlae}ﬁl)(e,/q,). Since both ¢, and mg, are
nonnegative wp 1, we have A, = 0 wp I V& In the
STOPBREAK process, the long-run impact of shocks varies
over time: The limiting value of the impulse responses is
stochastic.?

Compare this to a stationary autoregressive process in
which the coefficients change values; i.e., ¥, = py—1 + €,
where €, is zero mean i.i.d. and p, is a random variable taking
the values p; and p, each with positive probability. The
mechanism that determines p, could, for example, be
governed by a Markov chain as in Hamilton (1989) or a
threshold (Tong, 1983). As long as the process is stationary
in all regimes, it will have A, = O wp 1 V. The rate at which
shocks decay changes across regimes, but the time series
remains fully mean-reverting. In fact, even if, say p, is unity,
the permanent effect of all observations will still be zero
with probability one. This arises because—assuming that
each regime is realized with positive probability—there will
eventually be enongh periods of stationarity for the effect of
a shock to disappear.

? At this point, there is no upper bound on A, However, sufficient
conditions for invertibility of the moving-average representation of the
process will be shown to suggest some logical bounds.
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The stochastic unit root process of Granger and Swanson
(1997), where p, varies stochastically around one, is also an
interesting case. Consider p, = exp (), where 7 is a
stationary Gaussian series with mean p, and variance 0'3‘ If o,
contains some positive temporal correlation and E (exp
() = 1, then the effect of past shocks is magnified, and X\, is
infinite wp 1. If 5 is such that E(exp (3. 0.40)) < 1, all
shocks eventually die away; i.e., A, = 0 wp 1 Vr. Between
these two extremes is a knife edge where the process
exhibits stochastic permanent breaks. However, the perma-
nent impact of shocks tends to fluctuate around one in this
case, so the process does not bridge the gap between
permanence and transience as STOPBREAK does.

Consider the following process:

y=W t e, tr=1,2,...,T, 3)
where p, = p_, + u, prob(y,=0) = (1 -p,),
prob (¢, ~ N(O, o2)) = p, and ¢, ~ N(0, 0?). We can rewrite
equation (3) as

Ay, = u,+ € — €.

It is obvious that the shocks %, have a permanent effect on y,
and that the shocks €, have a transitory effect. However, it is
difficult to formally define the permanent effect of an
innovation as above, because it is not clear what form
E(y:+4|y") takes for this model. The random variable i, is not
measurable- F,_; and is not the conditional mean.

The best linear representation for the process in equation
(3) is an integrated moving-average or, by another name, the
exponential smoother. The exponential smoother has con-
stant partial permanent breaks wp 1 in each period. A fixed
proportion of each shock remains permanent, where this
proportion is determined by the probability of a permanent
shock, p,,, and by the relative variances of the two innovation
terms. We show in section VI that a STOPBREAK model is
able to forecast the process in equation (3) significantly
better than the exponential smoother.

B. Properties of the STOPBREAK Process

‘We can rewrite the basic STOPBREAK in the equation
(1) and (2) process as

Ay, =€ — 8,.1€,., t=1,2,...,T, {4)
where 8,-; = 1 — g,-,. To forecast from this process, we
require an estimate of €,_,, which ultimately requires a
forecast of €, which is not observed. That is, we require the
process to be invertible, which means that the estimate of
€, depends on €, with a coefficient that vanishes with
probability one for large 7.

THEOREM 1: The nonlinear moving-average process in
equation (4) is invertible wp 1 if E(|1 ~ g,(1 + q)l
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Fo) = ¢ < 1, where my = (&/q,)(99/0€)|,, and [c,]
is a deterministic sequence defined such that img_ .. l—I,T=1
¢, =0.

Proof: See appendix.

Invoking the conditions of theorem 1, we have E(\|F|) <
2, although intuition suggests that the majority of the
probability mass for A, would lie in the [0, 1] interval. Values
greater than one may arise from second-order effects through
the function g,. An increase in €, raises the long-run forecast
of y, firstly by proportion g, and secondly by raising the
value of g,. Thus, depending on the properties of the function
¢, the final effect of a change in €, may exceed the value of
the change; ie., the permanent effect of shocks may be
greater than one.

The simplest example of a functional form for g, that
satisfies the conditions in theorem 1 is a threshold function,
where g, takes the value one for values of €, greater in
absolute value than some threshold, and zero otherwise.
Although the elasticity of g, with respect to €, is infinite at the
threshold, we can still claim invertibility wp 1 since this
event occurs on a set of measure zero.

We choose to specify g, as a continuous function. This
allows for partial permanent breaks in the process, so that
shocks in the gray area between large and small have only
some proportion that is permanent. Intuition suggests that
this less rigid specification may better represent many
empirical data.

Suppose that a correctly specified model for g, is

€
9{y) = i

[

v >0, 5)

Under this specification, there is a smooth transition be-
tween the two extremes as shown in figure 1. A more rapid
transition is obtained by increasing the exponent on €, to
four. It turns out that most smooth functions of the shape in
model (5) will satisfy the conditions of theorem 1. To violate
these conditions, one needs a function with a steep section
that is realized with a high-enough probability to drive
E(\|F,_|) above two.

Along with its simplicity, an advantage of this specifica-
tion is that it collapses to one as vy goes to zero. This enables
parametric testing of the random-walk null hypothesis. A
number of other specifications, such as the logistic, can only
collapse in this fashion if an extra parameter is added. Then,
under the null, there is an unidentified parameter, which
introduces further complications to the testing problem.

Another useful property of the specification in (5) is that,
for all y > 0, g, = 0 if and only if ¢, = 0; i.e., no nonzero
shocks are completely transitory. Thus, in periods of small
errors, the process is only approximately stationary. This
approximation proves beneficial for hypothesis testing be-
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FIGURE |.—g,{) PLOTTED AGAINST €,
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cause it yields test statistics with the standard distributions.
‘We return to this topic in section I11.

C.  Generalizations

The STOPBREAK process is a special case of the
following general breaking process:

AL)B(LY(y, — x'8) = A(L)zg, + B(L)(1 — z)e,,

t=1,2,....T,
AlLy=1—- oL ©)
—oplr— =l
B(Ly=1-B.L
~Bl? = - B

where x; denotes a vector of explanatory variables, ¢, an
innovation term, z;-; some measurable function of informa-
tionup to ¢t — 1, and L the lag operator.

When z,..; = 0 wp 1 V¢, B(L) is a common autoregressive
and moving-average factor that cancels out to leave A(L)y, =
€, Similarly, the process reduces to B(L)y, = ¢, when z,_; =
1wpl Ve Settingd =0,B(L)y =1~ L, A(L) = 1, and
Z-1 = ¢;-1(yo) obtains the basic STOPBREAK process.

Copyright © 1999. All rights reserved.
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TABLE 1.—PoWER orF DickeY-FULLER TEST AGAINST STOPBREAK

ia? 0 0.5 1 15 2
Power 0.05 0.15 0.23 0.30 041

2.5 3 35 4 4.5 5
0.45 0.56 0.62 0.65 0.68 072

Monte Carlo experiment conducted at nominal size of 5% using 5,000 repetitions on samples af F00) observations

The general process in equation {6) will exhibit a chang-
ing permanent effect of shocks only if one of the lag
polynomials, say B(L), contains a unit root and if the other
one has all roots outside the unit circle. This causes the effect
of innovations to range between permanent and transitory.
For example, consider 8 = 0, B(L) = 1 — L, A(L) = 1 and
suppose thatz,_; = l wp lifr=¢*andz,_, = Owp 1 if s #
r*, where 1 < r* < T. This process has a break in its mean at
t=r*ie,N=1wplats=r*and A, = 0Owp 1inall other
periods.

The general formulation in equation (6) also reveals a
number of possible generalizations to the simple STOP-
BREAK process. For example, the process could have some
temporal correlation when in ‘‘non-breaking” periods. This
corresponds to 8 = 0, B(Ly =1 — L,A(L) = 1 — opL, and
Z—1 = ¢;—1{"yo), and implies the moving-average representa-
tion:

Ay, = aplAy,-, + €~ 0,16, t=12,...,7T, (7)
where §,-; =1 — (1 -~ ap)gi-; and 0 = oy < 1. Now y, has
an AR(1) and a random walk as its two extremes.

Including explanatory variables implies a type of tempo-
rary cointegration because it implies that a linear combina-
tion of variables follows a STOPBREAK process. This
linear combination is approximately stationary for periods
of time before moving and then remaining nearly stationary
at a new level for a period of time. The cointegrating
coefficients do not change. This parallels the practice of
intercept correction, which is often used in forecasting. (See
Hendry and Clements (1996).) The intercept is allowed to
shift to correct for mean shifts while keeping the fundamen-
tal relationship between the variables constant.

There are other special cases of process (6) where A, is
equal to a constant wp 1. For example, if 8 = 0,A(L) = 1 —
al,B(Ly=1-—BL,andifz,_, =O0wplVi<r*tandz_, =
1 wp 1 Vr = r*, we have an AR(1) process where the
autoregressive parameter transforms from o to B at r = r*.
This formulation is slightly different from a conventional
parameter shift, since the break in this case is not clean.
Unless ¥, is equal to its unconditional mean at the change
point, the influence of that point decays away exponentially.

III. Hypothesis Testing

In the long run, a STOPBREAK random variable has no
tendency to return to any previous point. With probability
one, there will be a period with a nonzero permanent break,
after which point the past has no predictability. Thus, the
process is not covariance-stationary, and its spectral density

at frequency zero is infinite. The long-run properties of the
series are like those of a random walk.

As shown in equation (4), the STOPBREAK process can
be written as a unit root process with a specific type of serial
correlation in differences. Thus, when data are generated
from a STOPBREAK process, Dickey-Fuller type tests do
not reject the unit root null with probability one in large
samples. However, there is some power against STOP-
BREAK because the downward bias in the estimate of the
autoregressive root is increasing in <o Alternatively, one
could think of this as size distortion caused by inadequate
augmentation of the Dickey-Fuller statistic. Table 1 lists the
simulated power of a simple Dickey-Fuller test against 'YOIO%
for a sample size of 1,000 using the STOPBREAK specifica-
tion in equation (7).

We formulate a test that is designed to distinguish
between a random walk and a STOPBREAK process.
Essentially, this test will search for plateaus in y, or, more
specifically, periods where the permanent effect of shocks is
low. Using the parameterization in equation (5), we can
write a model for the process in (1) and (2) as

Y€~
Ay, = ;T e
Yt e,

From this, we see that the random-walk null can be
formulated parametrically as a test of Hy: v = 0. Consider
testing against the point alternative y = %¥. From the
Neyman-Pearson lemma, the most powerful test rejects for
large values of the likelihood ratio. Given theorem 1, we can
form the Gaussian conditional log likelihood functions
under the null and under the alternative, and write their
difference as

1 & Ye-1
Lx—Lo‘—'“*;2'2 Ay.+§+ 3

€1

2
) - (A .Vt)z)

Y €1
=——> Ay ®)
a’ ; ( [7 +e,
¥ 4 € \
20T\ + €4

Thus, the most powerful test of the random-walk null is a
linear combination of two statistics, each of which depend
on the values of the parameters under the alternative. It
follows that there is no uniformly most powerful test of a
random walk against a STOPBREAK model. Consequently,
we consider ¥ local to zero; ie.,y = ¢/ \/7" .
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THEOREM 2:  Suppose that €, is a strictly stationary random
variable on a complete probability space (), 7 P) and is
o-mixing such that m®a(m) — 0 for some v > 32. Then, for

any c > 0,

From theorem 2, the second term in equation (8) is
asymptotically equivalent to a constant. We show in theorem
3 below that the first term in equation (8) has a nondegener-
ate asymptotic distribution, which implies that it is a
sufficient statistic for the locally best test. This suggests
using a t-test of Hy: ¢ = 0 against a negative alternative in
the following regression:

T 2 2
1 t €

(C/\/T + Erz)z

€

(/T + 22

T35

—E

Proof: See appendix.

Ay

Ay, =b————+ 1.
! ¥+ Ay:, !

&)
The standard distribution theory applies to this r-statistic.
This arises because the form of g,..; means that the process is
never exactly stationary, implying that—under both the null
and the alternative—A y, contains no unit moving-average
roots. The result is formalized below under general assump-
tions on g,.

THEOREM 3: Suppose that |y}, t = 0,1,...,T, is a
stochastic process represented by equation (1) and (2) with
q(cp) = ef/(col\ﬁ" + e,z), co=0. Let[e,, F, | be an o-mixing
strictly stationary martingale difference sequence with
Ele,|*7 < o and m*a(m) — 0 where p,q > 1 and

8p%g
>,
(g—NDp—1

Suppose also that €|F,_) is distributed symmetrically about
zero. Then,

t5 — W(T, ¢o, ©) -5 N(O, 1)

where

d Ay
EAYt_ =
=1 T+ AYE,

2)1/2 ’

' . GA Y-,
= T + AYL,
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- CoOryy
w7, cp,c) = — -
Toy
E i
Wry = — s
M T o T + HENT + €0
T I3
Wl =E €€,
o @NT + €’ ’

¢ > 0 and i, denotes the least-squares residuals from the
regression in equation (9).

Proof: See appendix.

Since {e, F,} is a martingale difference sequence, the
mixing assumption in theorem 3 governs dependence in the
higher conditional moments of ¢, The strength of these
mixing conditions can be reduced by increasing the moment
restrictions. For example, if all moments of €, are assumed to
exist, then the size of the mixing coefficients can be as low as
32. Alternatively, should we allow the size of a(m) to be
arbitrarily large, we only require that €, have more than four
finite moments. It seems that the latter of these two would be
more likely to be binding in practice. Switching from mixing
of size 32 to size = is unlikely to exclude many processes
and mixing of an arbitrarily large size still covers m-de-
pendent processes {those with a finite memory) and pro-
cesses in which the mixing coefficients decay exponen-
tially.?

From theorem 3, comparing #; to a standard normal is
asymptotically equivalent to the locally best test of a random
walk against the altemnative ¢ = ¢. However, in practice,
researchers are unlikely to know the correct value for c.
Further, they will not generally be interested in testing
against this specific alternative. They are interested in
determining whether there exists a value that provides a
significantly better fit than a random walk.

Setting ¢ = ¢ and assuming €, i.i.d. normal, we use
theorem 3 to compute the envelope of maximum power.
Then, by comparing the power of the test against ¢ for a
given ¢, we search for values of ¢ that yield power close to
the envelope. From figure 2, we see that choosing ¢ such that
power is optimized somewhere between 50% and 75%
causes little loss in overall power. This translates to a choice
of W(T, ¢, ¢) between — 1.5 and —2.5. Given the Gaussianity

3 The main problem with the concept of mixing is that it is difficult to
verify theoretically and cannot be veritied empirically. With considerable
extra work, one can replace the assumption that €, is mixing in theorem two
and three with the assumption that it is near-epoch dependent (NED) on a
mixing process (Davidson, 1994, Ch. 17). For example, if € is a
GARCH(1, 1) process with more than four finite moments and i.id.
innovations, it can be shown that €, is NED on its innovation sequence. The
results in theorem two and three still hold in this case, even though it is
unclear whether or not €, is mixing. Assuming that €, is NED also adds
significantly to the proof of corollary (4) (below) as we would then be
dealing with a process that is near-epoch dependent on an NED) process.

Copyright © 1999. All rights reserved.
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FIGURE 2.—ASYMPTOTIC POWER CURVES
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Note: Curves plot asympiotic power against y* for T = 200. The “true” curve is optimal everywhere, and the ather curves are derived for fixed T such that power is optimized af the indicated level.

assumption, we can integrate to find wr,5, yielding

Ewrﬁ

W(T,¢,c) = - p

1+ y*
=—y*\/7(
N

y*
12
X(I—Q(\/F))—i)

where v* = &//o,T and ®(z) is the standard normal CDF.
Table 2 lists recommended choices of y* for various sample
sizes.

Since o7 is generally unknown, we recommend approxi-
mating it with T~'SL (Ay)2 This use of the data in
determining y* will affect the distribution of the statistic, but
we speculate that the effect is small when compared to the
benefit of choosing the right order of magnitude for y*.

When ¢ is set to zero, the £ statistic is a variant of the
Lagrange mutltiplier (LM) statistic for a test of Hy: yo = 0.
From theorem 3, we see that wr,y is infinite and wpyg is
finite, which implies that (7, cy, 0) = O for all ¢g; therefore,
the test has no power. The statistic is asymptotically
distributed as standard normal under both the null and the
alternative. This failure of the LM test results from a
discontinuity in the function g,(y) at the null, which causes
the likelihood function to degenerate. In particular, the
derivatives of the likelihood have no finite moments.

Vw/2 exp (y*/2)

All of the above analysis is performed under the assump-
tion of Gaussianity, although it is unlikely that the STOP-
BREAK disturbances will be Gaussian. However, Monte
Carlo simulations of the asymptotic power curves under
both a mixture of normals and a GARCH(1, 1) reveal a
similar picture to that in figure 2. In fact, the power of the
test in these cases is slightly higher due to the excess
kurtosis, which helps by driving a wedge between small and
large shocks. The size remains correct.

IV. Testing in a More General Context

In many cases, empirical data will exhibit some temporal
correlation in all periods. In the remainder of the paper, we
analyze a more general process of the form in equation (7).
This introduces a complexity to the hypothesis-testing
problem, as og is unidentified under the random-walk pull,
yet knowledge of it is required to compute the test statistic.
Thus, we must choose a value for o, despite the fact that it
does not exist when the null is true. Suppose we choose the
value o.

We compute the Neyman-Pearson test statistic as the
t-statistic on ¢ in the following regression:

+u, (10)

As before, the test statistic has an asymptotic normal
distribution. This result is given below in corollary 4.

TABLE 2.—CHOOQSING LOCAL POINT ALTERNATIVE

¥ 0.79 0.52
T 50 75

0.40
100

0.18
250

0.10
500

0.074
750

0.060
1000

0.035
2000

0.018 0.011
5000 10000
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CoROLLARY 4:  Suppose that {y,}, r=0,1...,T, is a

stochastic process represented by equation (7) under the
assumptions of theorem 3. Then

— W(T, ¢, T, g, @) -5 N(O, 1),

where
é Er A)’;—.‘
= = e\T + Ayr,
f; é ' i A)’r—i pAN 7
S\t YT Ay
W7, o, C, v, C)
DT Evy
= colag — 1) ,
TRy

m

&2 2 26D

(L/\, 4 e, ()2)

i
o€/

Wrgyy = F
T ((I O(Co/ T+€, ,)

=i
e,

=@ T + €L)

|

and 4, denotes least squares residuals from the regression in

(10).
Proof:  See appendix.

We see that, if oy = 1, the asymptotic power of the test is
equal to the size for d]l cp. This also occurs when @ = 1,
because in this case wj - is infinite. This lack of power
arises because, when ag = 1, the null of a random walk is
true. As ap goes to one, the correlation within the flat spots
increases until they are no longer flat; i.e., the rate at which
shocks are expected to decay goes to zero. In contrast, when
v goes to zero, the plateaus shrink in size, keeping the
correlation within them at a given level; i.e., we decrease the
probability that an observation will have a low permanent
impact. Thus, there are two distinct ways of parametrically
representing the random-walk null.

In order to maximize power, we should choose o to be as
close as possible 1o o as oflen as possible.* One strategy
could be to choose it arbitrarily. This avoids using the data
and thus distorting the distribution of the test statistic. Since
the power of the test decreases as a goes to one, it would be
advisable to weight this choice of & towards one. However,
if we choose it too close to one, the distribution of the test

4 If ¢, is distributed independently, the value that we choose for o has no
relation to the optimal choice of ¢, since changing o serves only to scale the
power against a nonzero ¢, value proportionally. Otherwise, we speculate
that changing a will have little effect on the optimal ¢

THE REVIEW OF ECONOMICS AND STATISTICS

statistic will be a function of Brownian motions and no
longer normal. This arises because the regressor in the test
equation becomes nearly integrated as o approaches one. A
possible choice is a = ().8.

A second strategy is to take the infimum of #; over feasible
values of o as suggested by Davies (1977) and elaborated on
by Hansen (1996), Andrews (1993), and others. The null
distribution of this statistic is well defined but will depend on
the correlation of #; across various different values of « that
will, in general, depend on the distribution of €,. In this case,
the simulated values prove reasonably robust to
GARCH(1, 1) and excess kurtosis. We conduct the test using
o € [0,0.9].

Finally, we could approximate the test by regressing A y,
on Ay, /(¥ +Ay2), i =1,2,...,p, where p is some
predetermined number. Under the null hypothesis, TR? from
this regression will be distributed as xfw. This procedure will
lose power because of the approximation and also because it
is unable to test against a one-sided alternative, but it is
relatively simple to perform.

Y. Quasi-Maximum-Likelihood Estimation

Given invertibility, we can specify the Gaussian condi-
tional log likelihood function for the process in equation
(7) as

1 T
LGN @) = —— (in
07 =1
X (Ayt - O‘Ayt——l + 91—151-1)2
T
o log (2ma?),
where ¢ = (y a o) and 7 = (y;,y5....,¥ 7). The
scores are given by
oL 1z
— = €w,, (12
™ ng w, )
aL 1 é ;
—=—— , and 1
P o2 & €7, an (13)
aL 1 T
5;=;2e;"—To", (14)
i=1
where
-1
we=bowy = (1= 0) ——e,,, (15)
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U =btq t g€ Ayl—l* (16)

by = 1 =(1 = o)1 + My 1o (an
and, since € is fixed and known, by = wy = o = Owp L.

Though the likelihood is constructed to be Gaussian, it is
not necessary that this be the true distribution. In fact, the
presence of large permanent shocks would indicate that
leptokurtic errors are likely. We derive consistency and
asymptotic normality results below under minimal assump-
tions on the errors.

THEOREM 5: Suppose that |y is a stochastic process
represented by equation (7) with le,, F,}a strictly stationary
a-mixing martingale difference sequence and Ele|% <
for some p > 1. Assume that q,() is as defined in equation
(5) and let ¥ be a compact subset of (0, ) X [0, 1) X (0, ).
Define ® = arg maxy L(y7, @) and ¢, = arg maxy
E(L(y", ), where ¢ € ¥ and ¢ is unique. Then & —
$o £ 0.

Proof:  See appendix.

Given the regularity conditions of theorem 5, asymptotic
normality of QMLE requires further restrictions on the
moments and dependence of €,. It is worth noting that, as in
theorem 3, if it is assumed that €, has marginally more than
four finite moments, then the o-mixing coefficients must
decay at an arbitrarily large rate. This allows some condi-
tional heteroskedasticity, although it may not cover some
well-known processes such as GARCH. In the case of
GARCH, we note that the result in theorem 6 still holds if
the concept of near-epoch dependence is utilized (Davidson,
1994, Ch. 17). However, since this adds considerably to the
mathematics, we do not incorporate it into the result.’

THEOREM 6:  Suppose that the conditions of theorem 5 hold
and also that the o-mixing coefficients on €, are of size
pl(p — 1) and that E|e,|* < o for some p > 1. Then

Vo HoT2($ — 90) - N(O, D),

where V= limy_., cov (T~ 2V,L(¥7, ¢p)), V L()7, @) rep-
resents the vector of first derivatives of L(yT, @), and

4 _[Hn O
(U o' H()z

with Hy = T a0,°27 |E(ss)), Hp = 20, and s, =
(wy, v)'. Assume that Hy and V, are finite, nonsingular, and
positive definite.

5 As in corollary (4), we use near-epoch dependence (NED) to prove the
result in its current form. Thus, assuming that €, is also NED on a mixing
process would require dealing with NED functions of NED processes in
the proof. This requires significant extra work.
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Proof: See appendix.

The result in theorem 6 may be of limited use in finite
samples, especially if the parameters are close to their
bounds. For example, the gradient of the likelihood function
approaches infinity as vy goes to zero, causing confidence
intervals to become condensed on the lower side. The linear
approximation that yields the asymptotic normality result
may thus give misleading confidence regions. A similar
scenario arises when o is close to one.

Alternatively, confidence intervals can be formed by
inverting a likelihood-ratio statistic as in Schoenberg (1997)
and Cook and Weisburg (1990). This approach requires
finding the value of the parameter such that the likelihood is
significantly different from the unconstrained likelihood,
where significance is determined by the usual chi-square
distribution. Since the likelihood is explicitly used, this
method better accommodates the nonlinearity and asymme-
try in the model.

VI
A. Two-Shock Process

Applications

Consider the process in equation (3); ie., y, = 4, + €
where u, = p— + 4, prob @, =0) = (1 —p,), prob
(u, ~ N, 02)) = p,, and €, ~ N(0, o). Suppose a? = 1.
Using simulated data and a variety of values for the
parameters p, and o, we compare the mean square forecast
errors for a number of potential modeling approaches.

Forming conditional forecasts for this process is difficult
because it is not invertible. The parameters can be trivially
estimated via method of moments, which enables uncondi-
tional inference. Shephard (1994) and others have proposed
computationally intensive simulation techniques for comput-
ing the maximum-likelihood estimates. Although a STOP-
BREAK model is only an approximation, we contend that it
is very useful for producing conditional forecasts.

‘We consider three models: a random walk, an exponential
smoother, and STOPBREAK. Each is compared to the result
from an ommiscient modeler who is able to recognize both
when a permanent shock has occurred and its magnitude.

The experiment is conducted over 100 trials of 6,000
observations each. The STOPBREAK model! and the expo-
nential smoother are estimated over the first 5,000 observa-
tions. One-step-ahead forecasts are then computed for the
next 1,000 observations without reestimation of the model
parameters. Mean square forecast errors (MSFE) are com-
puted and compared with analytically calculated MSFEs
from a random-walk forecast. The results are shown in
table 3.

The far right column in Table 3 contains the difference
between the average MSFEs for the exponential smoother
and STOPBREAK, with associated standard errors. We see
that the relative performance of the STOPBREAK improves
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TABLE 3.—MODELING THE Two-SHOCK PROCESS: AVERAGE MEAN SQUARE FORECAST ERRORS

Random Exp. {Exp. Smoother —
p o? Omniscient Walk Smoother STOPBREAK STOPBREAK)
0.01 2 1.02 2,02 1.16 1.16 0.00
(0.07) (0.06) (0.02)
0.05 2 1.10 2.10 1.38 1.38 0.00
(0.09) (0.08) 0.02)
0.1 2 1.20 2.20 1.58 1.58 0.00
(0.09) 0.09) 0.03)
0.01 5 1.05 2.05 1.26 1.22 0.04
(0.10) 0.07) (0.04)
0.05 5 125 225 1.66 1.59 0.07
(0.13) (0.11) (0.03)
0.1 5 1.50 2.50 2.03 1.95 0.08
(0.14) 0.13) (0.04)
0.0l 10 1.10 2,10 1.38 128 0.09
(0.14) 0.09) €0.06)
0.05 10 1.50 2.50 2.02 1.86 0.15
(0.19) 0.16) (0.05)
0.1 10 2.00 3.00 2.66 249 0.16
(0.23) (0.21) (0.05)
0.01 20 1.20 220 1.57 1.39 0.18
(0213 (0.14) (0.08)
0.05 20 2.00 3.00 2.64 2.38 0.26
(0.31) (0.28) (0.06)
0.1 20 3.00 4.00 379 3.52 0.26
(0.40) (0.38) (0.06)

with the variance of the permanent shocks. When the
variance of the permanent shocks is high, the exponential
smoother is penalized for its slow adjustment. In other
words, this scenario highlights the ability of the STOP-
BREAK model to react quickly to large permanent innova-
tions. As the permanent shocks become smaller on average,
the performance of the two models becomes insignificantly
different. These results are largely independent of the
frequency of the breaks, although, in some cases, the superiority
of the STOPBREAK model is less significant at low break
frequencies. This likely arises because the more permanent
breaks there are, the more opportunity the STOPBREAK
model has to exercise its comparative advantage.

B. Relative Stock Prices

Individual stock prices have a tendency to move together,
by virtue of their existence in a common market. This
empirical observation is supported by a number of asset-
pricing models, the most well known being the CAPM, in
which individual stock returns are proportional to the return
on the market portfolio. However, these models tell us little
about the dynamic features of relative stock prices. The goal
of this analysis is to gain insight into the dynamics of
relations between stock prices over time.

Many researchers have conducted cointegration tests
amongst asset prices, with mixed results. Chelley-Steeley
and Pentecost (1994) and Cerchi and Havenner (1988) both
find evidence of cointegration among stock prices, while
Stengos and Panas (1992) do not. Granger (1986) finds that
the predictability inherent in cointegrating relationships
precludes them from existing in an efficient market.

However, it may be that such relationships could exist
over short periods of time in a market with imperfect
information. Consider a market in which two stocks, A and
B, are traded. Suppose that firms A and B are in the same
industry. Various types of information will lead to a change
in the value of just one stock or of both. Whenever the price
of one stock changes, investors must ascertain whether this
information is relevant in determining the value of the other
stock. For example, if firm A announces better-than-expected
profits, it may indicate higher profits for the whole industry. The
price of stock B will initially rise to reflect this possibility and,
then, as more information becomes available, it may go to a new
“high profit” level, in which case the ratio returns to its original
value. Otherwise, stock B may return to its initial point
leaving the ratio permanently at a new level. Thus, we
observe serial correlation in the relative price of the stocks
with a time-varying permanent impact of shocks.

As an example, the logarithm of the Mobil-to-Texaco
relative share price is shown in Figure 3. The presence of
apparently stationary sections indicates periods where shocks
have a low permanent impact punctuated by episodes of a
high impact. This is most evident in the last five years of the
sample where there are a number of three- to six-month
periods where the first-order autocorrelation in the series is
approximately 0.7.

We apply the STOPBREAK model to daily data on a
number of stocks over a sample period of January, 1988,
through December, 1995. The data were obtained from
Datastream International.

The results of tests of the random-walk null are presented
in table 4, where each column in the table contains the
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FIGURE 3.—L0G SHARE PRicE RaTIO—MOBILE/TEXACO
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statistic computed using different methods of accommodat-
ing the unidentified parameter, as outlined in section V. We
see that the null is rejected in almost all cases, with the
conclusion generally invariant to the method of setting the
unidentified parameter.

QMLE estimates of the model over the full sample are
given in table 5 for four stock pairs. The estimates of o and
the standardized vy are broadly similar across the four pairs,
although confidence bands are wider for Coke/Pepsico and
J&J/Merck. In both of these cases, there is a high positive
correlation between & and 4. Intuitively, the model is having
difficulty distinguishing between high temporal cotrelation
with few breaks and lower correlation with more breaks.

In all but one case, the estimates of vy are within two
standard deviations of zero, when heteroskedasticity-
consistent standard errors are used. However, 95 percent-
confidence intervals computed through inverting the appro-

TaBLE 4 —TESTING THE NULL OF A SiMPLE RANDOM WaLK
Acamst STOPBREAK

Sup, Approx. Approx.

g (p=13) (p=10) a =08
Coke/Pepsi —2.98** 15.08%* 21.94%* —2.88%*
Y& J/Merck —4.02** 18.00%* 28.65%* —4.01%*
GM/Ford —3.23** 17.91%* 20.78%* —3.08**
Mobil/Texaco —5.11%+ 22.55%* 33.20%* —=S5.11**
ITT/Hilton —2.12%* 16.25** 19.22%* ~1.96**
AT&T/MCI —2.24%* 8.93 13.47 —2.244%
McDD/Boeing —0.03 5.29 11.62 0.28
IBM/Microsoft —2.60%* 7.37 13.46 —2.60%*
Coors/Anheuser-Busch ~ —3.70*%*  13.63%* 21.48*%* —3.66%*
Critical Values: {0% —-1.72 9.23 15.99 —1.28
Critical Values: 5% =207 11.07 18.31 —1.65
* indicates significance at 10%.
*+ indicates significance at 5%.
Critical values for the sup, o test were using 1,000 on 1,000 obs ionsand @ €

[0.0.9}.

T ™ T Y

1992 1993 1994 1895

priate likelihood-ratio statistic reveal a much shorter interval
on the lower end.

Comparing the estimated variance of the STOPBREAK
errors with the estimated variance of Ay, reveals a low fit,
with R? often less than 1%. The low fit is not unexpected,
given the nature of financial data. However, it may possibly
be improved by a richer specification of the model. For
example, we could estimate some equilibrium relationship
between the stock prices rather than using the ratio. Incorpo-
rating features such as conditional heteroskedasticity and
more memory in g, could also prove fruitful.

A further indicator of the presence of stochastic perma-
nent breaks in stock price ratios is to compute potential
profits from a trading strategy. The STOPBREAK model
predicts the direction that the price ratio will move; that s, it
forecasts whether the prices will move towards or away
from each other. If they are predicted to move apart, the
investor will buy the higher-valued stock and sell the
lower-valued stock short. In a STOPBREAK framework,
such an investor is expected to make small gains regularly
and then to make either large gains or large losses when the
unexpected permanent shocks occur. On average, these large
profits and losses will cancel each other out, leaving an
accumulated wealth with no money down.

We compute the profits gained from enacting the above
pairs trading strategy for January, 1996, through June, 1997.
The model is not reestimated during the forecast period, and
standard errors are computed assuming that daily profits are
i.i.d. The results are given in table 6.

As a benchmark, we compare the STOPBREAK profits
with those from using the same strategy, but forecasting
using an exponential smoother and a twenty-day moving
average. For J&J/Merck and Mobil/Texaco, STOPBREAK
outperforms the other models both in terms of mean return
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Tarik 5—QMLE EsTIMATION

Coke/Pepsico Mobil/Texaco J&J/Merck Coors/Anheuser
& 0.711 0.746 0.739 0.830
95% C.1. (0.476, 0.966) (0.623, 0.842) (0.495, 0.970) (0.681, 0.925)
Usual s.e. (0.089) 0.037) (0.088) 0.041)
Het. Cons. s.e. (0.172) (0.044) {0.200) {0.060)
§(X10%) 0.065 0.101 0.090 0.308
95% C.L (0.019, .323) (0.044, 0.195) (0.025, 1.210) (0.088, 0.782)
Usval s.e. (0.023) (0.025) (0.038) (@.114)
Het. Cons. s.e. ((L040) (0.038) (0.082) (0.184)
62 0.384 0.766 0517 0.617
&2 0.169 X 1073 0.131 % 1073 0.175 X 1073 0.500 x 10~}
TIE (Ay) 0.170 X 1073 0.133 x 1073 0.177 X 1073 0.504 X 1073

Nole: Optimization was performed using the BFGS algorithm in GAUSS

and the Sharpe ratio.® For the other two cases, the naive
moving-average model performs better. In no cases does the
exponential smoother beat the STOPBREAK model.”

VII. Conclusion

We have proposed a new approach to modeling processes
in which the effect of shocks fluctuates between permanent
and transient. Typically, such data exhibits periods of
apparent stationarity punctuated by occasional permanent
mean shifts. Rather than attempting to individually character-
ize a number of different regimes, we allow the process to
predict whether part or all of a shock will be permanent or
transitory. The stochastic permanent breaks (STOPBREAK)
process assumes that permanent shocks can be identified by

% The Sharpe ratio is usually computed as the ratio of annual return to
annual standard deviation. In this case, since there is no initial investment,
we do not have a return but rather an accumulated wealth. Thus, the use of
the term Sharpe ratio here is not strictly correct.

71t should be noted that this trading strategy requires regular transac-
tions, as evidenced by the “‘average days between changes” in table 6
being approximately two in most cases. This means that the investor must
reverse her position to go long in the other stock on average once every two
days. For this reason, transactions costs could potentially be high.

TaBLE 6.—TRADING STRATEGY PROFITS

Coke/ Mobil/ J&3/ Coors/
Pepsico Texaco Merck An-Busch
STOPBREAK:
Average annual 0.188 0.242 0.471 0.365
wealth (0.296) (0.180) (0.229) (0.447)
‘Sharpe Ratio’ 0.634 1.342 2.057 0818
Avg. days between 2.62 1.96 1.96 2.36
changes
Exponential
Smoother:
Average annual 0.162 0.214 1.302 0.301
wealth (0.296) (0.181) (0.230) 0.447)
‘Sharpe Ratio’ 0.568 1.185 1314 0.674
Avg. days between 2.16 1.94 1.99 2.05
changes
20-day moving aver-
age:
Average annual 0.307 0.121 0.442 0.406
wealth 0.296)  (0.181)  (0.229) (0.446)
‘Sharpe Ratio’ 1.039 0.671 1.927 0.909
Avg. days between 1.42 1.29 132 3.91
changes

their larger magnitude, but this assumption should be viewed
as a special case rather than a necessity.

We considered two applications of a STOPBREAK
model. First, we analyzed simulated i.i.d. data with random
mean shifts of random amounts. The STOPBREAK model
can be viewed as an approximation to this type of process.
Out-of-sample mean square forecast errors reveal STOP-
BREAK to be on a par with the exponential smoother when
the variance of the permanent shifts is small. As the size of
the permanent shock increases, the relative performance of
STOPBREAK improves, and it becomes significantly better.

The second application involved pairs of stock prices. We
posit that the relative price of two stocks follows a STOP-
BREAK process. The two prices tend to move together for
periods of time and occasionally jump apart. Hypothesis
tests reveal evidence of stochastic permanent breaks, and
maximum-likelihood estimates are used to form a profitable
out-of-sample trading strategy.
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APPENDIX

Proof of Theorem 1

Let{#}.t=0,1,..., 7 beasequence of realizations from the process

in equation (1) and (2) and write

&=~ §-&-, +AF e=1...,7), (A1)

where &, denotes the sequence of realizations from [e,, 7| that generated
)‘il M

Invertibility requires that the innovations can be computed uniquely
from the observed time series. Consider the sequence of real numbers, &,
€, ..., &, where

&=(~g-)8 +Ay, (¢=12...D), (A2)
and §,-; = g{(&..,). Suppose that & is drawn from an unbounded uniform
distribution.

From Granger and Andersen (1978), the process is invertible if the
sequence He, - ¢ converges 10 zero. Thus, since the recursions generating
{€/) and [¢,] are identical, it is sufficient to show that the starting value in
equation (A.2) has no effect in the limit. The result here could be termed
“weak invertibility,” as we show only that convergence occurs wp 1.

Consider the effect on &; of a perturbation in &y

d€, ag !
— =1 -ldot ! &j.
TN a8 {eﬂ
This leads to
ae, [Loge, T
—=[1- ‘H &
[ S =) :,
T1
(=gl + 940

=0
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Now, utilizing the law of iterated expectations, we have

98, T—1
Em =E(‘1:£\l - gd1 +nq.)l)
-1
= E(ll = a0+ a0l [LE(L - 40 + fl1F)

-
= E[\l - gl + ﬁ,,onl]c,)
™1

=Ei1'ao<1++.,o)iﬂc,

—~+Qas T - 00

Since E|d&r/d2 ] — 0 as T — o, we say that 3¢;/6&, — 0 in L, norm. From
Davidson (1994, theorem 18.13), this implies convergence in probability;

N

for every 8 > 0, and the process is invertible wp 1.

llm (prob

QED.

The following lemma will be useful in proving theorems 2 and 3 and
corollary 4.

Lemma Al

Let X, be some strictly ively valued r
variable defined on a complete pmbabxltty space. . Consider the function

f -
n of \/T + X,I

where 0 < ¢ << ®, Then, for all p > 0, E(f}) =
A1 + p).

O(T*F) for any £ >

Proof of Lemma Al:

For T < ¢, we have

XI T\M
= .
iy X 2"

For some 8 < 1, we split £(fy,) into two components: one for f7, less than
T¥4{2c"? and the other for fr, between T%42c'2 and the upper bound
T'™/2c¢'2, We then choose § to be the smallest value such that the
expectation of the latter component shrinks to zero. It follows that the
moments grow at the required rate.

Let Y > Z) be a function taking the value one if ¥ > Z and zero
otherwise, Now consider

E(f}) = E(f5d(fn = TY12c') + B(fRl(fr > TH2c'%))

T
= (2 m)ﬂ + (B ) (B (S, > T2 )

where ¢ > 1 (from Holder’s inequality). Using the boundedness of f, and
the binary nature of the function I(¥ > Z), we have

7
+

TBI4
e =l

T4
= (zcm

T\,
ﬁ) (Prob (fr, > TH2c )
c

P \P

(Prob (X, € [47, B7])",

T1/4
+
2 1/2
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where

AT = ((.IIZ/TSM)(I — (] _ T(B—!)/Z’.)IIZ) = O(T—SM), and
BT = (leZ/TSM)(l + (1 —_ T(B*I)Il)lﬂ) = O(TASM)A

Now By — Ay = O(T %), so, given that Prob (X, € [A7, B7]) = I, we have
Prob (X, € [A y, By]) = O(T~%4). Thus,

E(f5) = O(T%*) + O(TH ¥4y = O(T%),

where
i 8/4, 1/4 8) ~—~pq > ? QED
- na ! — = . E.D,
£= min max dpgl 41 +pg)” A1 +p)
Proof of Theorem 2:
Define
<
t=01,...,7),

TS T = .
© (T +

where 0 < ¢ < %, We use arguments similar to those in Andrews (1988)
and de Jong (1995) to show that

i
— 0,
2

.,
“T“ > wr — E(wn)
=1

where |||, = (E(x?))". For all m = 1, we can write
T T
T, wry = E(wp) = T, (wp, — E(wn)) — EOvyy — E(wi) | 7)
=1 r=1

T
+T7' 3 Ewr, — E(wp)| )
=1

— E(wr, ~ E(Wn)’-‘in-m)

T
+ 77" D Ewr, — Ewr)| From)
=1

T m—1

=712 % Ewn, — Ewp)| %)

=1 j=0

— E(wp, — E(WT:)LZ}—FI)

T
+ 7! 2 E(wp, — E(WT¢)|-71';—”;)
=1
=Wr+ Vi,
Define Yrq = E(wy, — E(“’Tz)l%ﬁj) - E(“{Tr - E(WTr)l-%'l—i‘l) = E(WT’l

Fri-)) — EOWr| #4—;-() and note that (Yr,, 5, ;| is a martingale difference
sequence for all j. We have

m~1

< T % [E(wg].F-plz + [Elwr,
J=0

~yﬂ—,‘—l)“2

THE REVIEW OF ECONOMICS AND STATISTICS

from Minkowski’s inequality. Now, since wr, is an .7,-measurable function
of finite length, we have from White (1984, theorem 3.49) that [wy,, .77, is
mixing of the same size as {g,, .7 ]. Thus, from Davidson (1994, theorem
14.2),

IEGwn] Z )l = 21 + V2) lwplpee( e 2%

for some p > 1, where a(j) denotes the strong mixing coefficient for €. It
follows that

mol
[Wrlls = 7742201 + ¥2) Iwrllyy 2, (@02~ % + afj—1) )
=0
= T34 + 2) wnlgm.

Now, from lemma (A1), we have |lwy|,, = O(T") where > 2p/(1 + 4p).
Thus, we let m increase with T by defining

7120
1+ \2)

m=my= y

where 8 > 0 and [x] denotes the largest integer less than x. This implies

71_im W, =< 8.

Using theorem 14.2 of Davidson (1994) on Vy yields

T
IVrlb = T7' 2 iEWn — Ewn)} Foe )l
=1
=21+ 2) g — Ewr)lpoump)tr 42
<41 +2) [wrllo,ce(mpye— V2

Now, since [wylh, = O(T"), we can use the definition of iy to write
[Wrllay = O(m}) where
n 2pf(1 + dp)
T2 - 12-2pK1 +4p)

4p.

1t follows that, for some finite constant X
IVel2 = KL + Dmampye D2
= K4(1 + \Z)(m3¥ e Vou(am, ez
Note that 2Ap/(p — 1} > 8p%(p ~ 1) = 32 is minimized at p = 2.
Then, since we assumed that a(my) is of size 32, we have ||V7]; — 0. Thus

T 137wy, — E(wp)ll, — 0 and, therefore, from White (1984, theorem
2.42), T7'57 \wp, — E(wy) 2 0. QED.

Proof of Theorem 3:
We have

1 Ay,

T + AY2

2}1/2

T
r—E Ay,

Wy VT =1

aAy,-,

E/\’,—f + A)’,zﬂl

Mﬂ

Y 1
m?.ﬁT =1
where

22
€€y

2
Wy = | E|—————— .
o ( ((E/\Fﬂe?_m))
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Note that

co/\ﬁ'

Ay = ¢,
Y1 - /ﬁ+€,2

€2

and consider the numerator of #5:

1 g Ay
Oy ﬁ,z. c/ﬁ‘+ Ayl
colﬁ
(e, col\T + € |EH)
c(,/\/f
1 o e col\ﬁ'+ €, « )
B Oray JP'E-; T + Ayy
LI Y=
B ey VT 151 \E/\/’T+ AY:Z—J
G { €€y \

“’T = [(Co/\/?*’en-z)(d‘ﬁ“* A)’f—l)l

YR Y
‘”nﬁT = \(colﬁ' + & )@ T+ Ayt )
4 < €-1€-2

T E (T + €.)coyT + € )ENT + Ay2,)

Wrey

We analyze each of these four terms separately, labeling them (i), (ii),
(iii), and (iv), respectively.

i €€, \

wnes VT 1 T + Y2
U &
= +
Wy VT =1 \?/\ﬁ+ € wrey \ﬁ'g
y ( g€ (e, — Ayl,) \
@T + € )T + Ay

1 T

(O]

1 T

1 €€,
g > (_—_E/ﬁ oy
y ( € 1(2008, - 1€,-3) \
\ENT + € )ENT + € )ENT + a2
1 é [ €. 1(ch6r)
..,,,,,1 ST+ e ,)%‘/ﬁ‘ + € JENT + A y{l))

T

1 1
€ fri—1 + 2c
wnﬁ\/i‘g tJTi-1 Dw _

(oY =

T Z &fn- 1fn-2fm—|

Eﬁfn fr-28ymens

- CO
TJ/Z

where

El
UJT+ €&’
1
TNT+ A

fn=

€
fn=—=———, and
’ cly

T + Ay?

8yn =

567

All three terms here are martingale difference arrays. For the first term, we
use the central limit theorem of Davidson (1994, theorem 24.3). For the
second and third terms, we proceed in a similar fashion to the proof of
theorem 2. One notable difference relates to terms with A y? rather than €?
in the denominator. Since

Ay c(,/ﬁ
1| = |y s,
Ye-1 -1 Cn/ﬁ’*'ff'_z'z
2
0
= lel—l! - 271 ,
we have
€ €, T
< B ——
o T+ AL, | |coNT + (lepn| = cl2TH2 | 6cl?

Thus, this term is bounded, and the bound and moments diverge at the
same rate as the term in lemma (A1).
Define

Tk,
wrogd ST + €}

Since le,, .7} is a stationary martingale difference sequence, |Zr,, 7} is
also a martingale difference sequence for allc > 0. To use Davidson’s CLT,

we need to show that max, ¢.<r [Zp| Z+0 and 37, 2% £+1. We have

Z, =

- 112, 14
T, T ,,

-0
~ 9plR ’
Wrez 2c

|2 =

implying that the first condition is satisfied. For the second condition, we
follow the proof of theorem 2 and write

r 7 m-1
Eﬁr 1=k T ’E‘ED(E(efT, 1|Fn-p
r= =1 j=i

~ B |Fn )+ T EE(m*’ &fhy = UFnw
=W+ V.

Since the summands of W; are martingale differences, we have

m=—{

1Wrlla < 075 7712 20 IECE T 1Fr-lla + ECE 7, el
£

Then, since €/ f%,_, is mixing of the same size as €, we can use theorem
14.2 of Davidson (1994) and then Holder's inequality to obtain
-1

IWell2 = 0k 77721 + J2) lle2f2_ by E @)% + a(j-1)e~ %)

= wrL T4 + D) ey ||fn_llhzim.a,~ om
for some p, ¢ > 1, where a(j) denotes the strong mixing coefficient for €,

From lemma (Al), we have |f3_opge1, = O(TM), where m >
2pg/(g — 1 + 4pg). Now, we let m increase with T by defining

s
me=mp = f
201 + V2

where & > 0 and [x] denotes the largest integer less than x. Then, since €,
has 4pq finite moments, we have

lim Wl = 8w; — 0.
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(Note at this point that the mixing conditions on ¢, could be relaxed if we
had a nontrivial lower bound on the rate of divergence of E(e f7-,) ng—y
In that case, we could allow m; to diverge at a faster rate, which in tura
waould put less of a constraint on the rate that the mixing coefficients
converge to zero.}

Using theorem 14.2 of Davidson (1994) on V; yields

el =201 + ’Z)mrm ”52”2;:(; Hfrrv zpgrg—1yextomp) P V20

and, since [{f3,. IHQM,‘, 1) = O(T"), we can use the definition of my to write
"fT: |”(2pq/q—|) O(mr) where
L pgflg -1 +4pg) A
112-m 12~ 2pgllg— 1 +4pg) q—1'

it follows that, for seme finite constant X,

Vzll2 = KimyoGmg)o= D2
= K™ D(amp))#~ 2.

Now 2Ap/(p — 1) > 8pq/(p — 1)(g — 1), and so, from our assumption on
the size of a(m;), we have |Vyll, — 0. Thus, [E7_,Z2 — 1], — 0, which
implies £ 22 £+1 from White (1984, theorem 2.42). We can now invoke
the CLT in Davidson (1994, theorem 24.3) to obtain E,TZIZT, LN((), 1).

Since {€,fr- fr-2fir1» F} is a martingale difference array, we can
proceed as for Wz above to obtain

2¢,
= ZCU'J’TWT Y2 e -1 fre-afim—

0
P E €S- lfz»—zfﬂm

Wy

From the boundedness of fr_; and fir—1, |€fr i fr2fin-i| = KT X
\€.fri—1 | with probability approaching one (wpa 1), for some § < 1, K < o0
It follows that

lim 2cqw7)s T 2 lcfn-s foa Sl = 1im 2eprsy T 2 e fre KT,
= ;ﬂ 2ey "erfTrﬂ”{ e |k(fn~1”2K7m

= ym 2¢,TE W =,

Thus, we have

THE REVIEW OF ECONOMICS AND STATISTICS

and, therefore,

T

E rf11 lfT/ lfm 1

[P fy

Similarly, we have

2 T

mEszn |f7r 28y~ |

lim
Tvc0

Wriry

< lim Qor T e fo1 /5 28m-il
o C0%rgy J-1d e 28yr-1ll2

= lim G lefnaly T esfin o KT

=0,

and, therefore,

1
C(Z) Efrfn lfn -2 &y1i- l"o

32
Wy T

Thus, for term (i),

T
€&,
— E = LN, 1),
Wy VT 1=1 1T + AV,
(i) Consider
T . T
Co €€ -2 €y 2
— = ~ 20 €n-28m-1 -
oy TS0 ((C(]/\r,—f + e,zvz)(('/\ﬁ' + Ay,l,x)J oz 11 Hnmaem

Since [€,f7,- 28,71 /) is a martingale difference sequence, we proceed as
above to get

T

Ty .
E Etf'n-—ZgyTr -1
T

Gy

lim

o

- ye 1 —
= 31_12 Cors T ”Erfn—zgﬂ‘y— il
= lim ey lecfyrmily T leof 2 KTl

=0,

which implies that

26 - o &
2 &fr-1fr-2fym-1 —'0 TE €fn 28n-1 > 0.
Wrey £ 4=1
Gii) o é Eg-l
11}
W05 T 151 \(co/T + €. )TT + Ay )
_ % é €, i 12 1(55y | ~ Ay 0 )
wryy T 171 \(coNT + € YENT + €. mnr, =1 o/ NT + €2 DENT + €. )T + Ay2.)

i ]E/ 2
(co/NT + €2 Wel (T + €2 YT + Ax2 oo T + eiy}

wres T (e T + € YENT + €. w5 T
_ P &6 \\
wre3 T e (cu/ﬁ T G + € JTT + Ay NeoT + €7)
Coldzyy 2c2 r &
=—+ 1,221(1,- WS-z ZEf%—lf%'t—ZgyTt'l + a,(1)
Wroy Wz T T =
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from theorem 2. From the assumption that €| F,.., is distributed symmetri-
cally about zero, |f5_,fiz—1fri-2, Fn1) is 2 martingale difference se-
quence. Thus, proceeding as for Wy above and using Holder’s inequality
yields

= T rm el fom app - ol - 2laip -1y = OT™

for any p > 1 and any

T
T2 Ef%z— Sfor-1fna
= 2

2p 2
—_—+
L+4p 5p—1

n > - 1.

Thus, we can choose p close enough to one such that n < 0 implying, from
White (1984, theorem 2.42),

ZcU

o Efn—lfm B 0.

Similarly, using Holders inequality and the boundedness of g5, we
have

|

for any p > 0 and any

r
T* Ef%wlf%—zg_m—l L = T_]Hf% I”lp”f%}—ZHZpT!u = 0(T™)
=1

4p 1
>—— .
" T+ap 2

We can choose p such that n << 0, which implies

3

EfTr Shoagm-1 0

ey b=

from White (1984, theorem 2.42).
Thus,

T 2 Cotas
E( il ) ALY

@y TE o/ VT + € NENT + Ayl w3

(iv) From the assumption that €,/.7 | is distributed symmetrically about
zero, the summands of (iv) are a martingale difference sequence with
respect to .4, ;. Then, as above, we have

T
HT“”E]’T,,]fn_zgm_l\ = T i llalife a2 = O(T™
=] 2

for any m > 2/5 — 1/2. Thus, we can choose 7 < 0, and we have, from
White (1984, theorem 2.42),

‘5(21 L € 1€-2 ) 5
T2 52 \(co/ [T + €2 )(cof\T + €2 )@NT + AyE )
Thus, for the numerator of z, we have

7

= (/\f?‘*' Ay,

Ay

CoWryy
W7oy

)=a,,<l>

where z ~ N(0, 1).
Consider the denominator of . Now,

. Ay,

b= Ay, — b——r.
' TOUENT + AL,

569

where

1 Ay
-2 A)’r:—z
T L‘/ﬁ+ A)’,AI
1 z ( Ayr—l e
T Z/\/FT‘F A'v,z‘l

T

b=

Since we have shown that
1 T
FEL

using lemma (A1), we have that the numerator of & converges to zero.
Then, replacing €, with A y, in the proof of theorem 2, we obtain that the
denominator is asymptotically equivalent to a nonzero constant. Thus,

&2 0
‘We have, for the denominator of #5,

S

Ayz—l

e — (@57~ Coipg) = 0,(1),
+A,2| To¥ [ 57 (4

wT‘,y =1 T + Ay,
1 é €Ay, 2 (I)
= ————| +0
m%—Tr:\(EI\ﬁW- Ay?, 4
1 21‘, [ ey
wls TS0 (cl\/T +Ay2,
Cue€,2 : o
- +o
FENT + Ay NeaNT+ e 7
1 ET:{ €€ 2 .
= =1 t o)
Wl T=1 T + Ay, 4
I L ( €€ 2
= = toll)
wTa.yTr=1 T + €, v
=1+ 0,1)
from (i) above, This leaves
( mm} M
R P = g,(1),
5 ©res P
and the result follows. QED.
Proof of Corollary 4:
‘We have
1 u : Ay,
Ay Qa7 ——————
wrs \,TZ' ‘; TNT + Ay2,
1o =
Y 1 2 X v ‘ Ay 2172
G at————
Wrgs T =1 "= TNT + Ay2,
1 T _ Y-
Ay C(L) -—_-——'—"—)
wray ﬁz TTNET + Ay

) Ay 312
FNT + AYE,
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where C(L) = 1 + aL + @2L? + --., and L denotes the lag operator,
Define
W) [ oLy |—=—
X = = -1 = ——.
! /\/7’+e,, ! ’ col\/7"+€,z,l
where Co(L) = 1 + agl + afl? + -- -, and note that the process in

equation (7) can be written as

Co
Ay, =g+ —

V,7_,(0%) — Dxpe—y.

The only change from the case in theorem 3 is that, since x7, depends on
the infinite past of €,, we cannot directly map the mixing properties of €, to
xr,. However, we can utilize the concept of near-epoch dependence (NED).
From Davidson (1994, definition 17.1), xy, is Z,-NED on fee,] if

(Elxr — ECen|F I < dnt,,

where p > 0, {,, — 0 and {dy| is a positive sequence of constants. We have

Elxp — EGn|F ()

i € l €
=F o E i lyrtm
gu c/\ﬁ‘+ €, (§ « c/\ﬁ’+ €, ! m)
Sl e )}
=F T
T e \c/\/f +e,l
ad . &-i ( €—i ‘
= IE|— -E T
= oNT+é, lc/\f7+ e,z,,,-’ ! ]
2E € - .
= 2E|—— i
c/\ﬁ'+ e,z = b

Let{, =3,/ —Oand

dr, = =0(T?)

!
E (A
oI\T + €

where § > 1/8. We can then proceed with the type of “telescoping sum”
proofs given for theorem (2) and (3) (i.e., decomposing the statistic into
sums of martingale differences and utilizing the mixing properties of €, and
lemma (A1). The results go through in identical fashion to those in the
proof of theorem (3). We present an outline below.

For the numerator of &5

EA)', C(L )(

Ay,
oI\T + Ay,

Wray

€o
&y + ‘/‘-T‘(ﬂo = Dxpyy

v

ST + Ay2,

- nxm)?:(L)

€. \

T + Aylz—ll

i
.:“
Mﬂ
8
£
T

Copyright © 1999.
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.
Co — el

(g — 1) Xp—C(L) |[-———
70 D 2 (E/Jﬂ Ay%_l)

Co -2
+—(xp— 1 Ol | ————
anT )Ze ()(I\/T+Ay, .)

2
[ X1 -2
+ (g — 1) X7 C(L) —_—
mraTm E m T + Ay,
T
Eexﬂ]+ (ﬂo_l)zxn Xr- + o,(l)
‘Urayv T

CoWrRyy
=2+ (@ = N——"+ a,(1)

where z ~ N(O, 1).
For the denominator, we have

T [ 2
1 2 (ﬁ 2 Fi-1 Ay, )
2 "4 2
Wygy D=l | =1 T+ Ay,
1 7 t €_; 2
= €D ot o,(1)
m;a__y TZ ( ' ; TINT + €, ’
=1+ 0,1)
Thus,
ty — colag — l) N(O 1},
Wray
and the result follows. QE.D.
Proof of Theorem §:

Gaussianity of L(y7, ¢) and compactness of ¥ provide sufficient
regularity for the existence of the QMLE (White, 1994), theorem (2.12).
We have

1
—aly, + 8,6 P — 5 log (2m6?)

T
=T 3 log fi('. ).
=1

Repeated substitution for €,.., reveals that £,(y’, ¢) is a function of the
increasing sequence {¥; i = 1, 2...,1]. Thus, to show consistency, we
utilize the uniform law of large numbers (ULLN) for heterogeneous
processes in theorem (4.2) of Wooldridge (1994). To invoke this ULLN,
we need to show that {log (¥, ¢): £ = 1, 2. | satisfies a weak law of
large numbers (WLLN) for all ¢ € ¥ and that there exists a function
c(y") = 0 that satisfies a WLLN and has the property that |log f,(y',
©1) — log (5", $2)| = e(y)ps — @2) forall ¢, 9, € ¥, where (x) denotes
the Euclidean norm of the vector x. Once the ULLN has been shown to
hold, we can claim consistency directly from theorem (4.3) of Wooldridge
(1994).

For some § € ¥, we have

1 1
———-e ——Iog (2w52),

log f( ¥, §) =

where & = Ay, — &Ay,-, + 0,.,&_;. We will show that & is L,-near
epoch department (NED) on the mixing sequence e}, and then use the
WLLN in theorem (1) of Andrews (1988).
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Following example (17.4) in Davidson (1994), we define a function  Also, since ay, & € [0, 1) we have o, & < k. It follows that
B¢, €_1,...,&) such that & = g, and consider a F;_,-measurable

function g} (€, €., .., € ») = g~,(_e,, € (y..es € 0,0,...). From a g, . .
first-order Taylor expansion, we obtain “‘d"‘“‘ = (U= R+ F A = A+ negep] + 2R
€
[ ag\* . -
[N (“‘) L) SU+k
jEme1 €

—0 as j—oo
where * indicates that the derivatives are evaluated at points between 0 and

€. Now, from above
ow
+ 4o : o \*
& ~ E@&]7 k= & — &7 le - Bl Dl = 2 2 e
j=m 1),
l[ i {58:’
= — e
L2 e <l =S G+l
JEmt}
[ as.\*
< (i) el = dilm,
jomrt |[\O€s 2
where d, = |/, and {n = 3+ 2%/, Thus, & is L,-NED on e,),
where [xf}, = (E |xpp)r, Differentialing yields which implies that & is L, -NED from Davidson (1994, theorem (17.9)).

Then, from theorem (17.5) of Davidson (1994), {E, - E(e Y, % | is an

ag, 8Ay, Ay |, a0, ) a8, L,-mixingale with constants 4} = d* = 2|[&]l,, for some p > 1. To invoke
—_ & & |—

+10,_, + P the WLLN in Andrews (1988, theorem (1), we need the sequence (€]} to the
€1

de.;  O€; o€, 9€- uniformiy integrable and ¢* to be finite. These conditions will be satisfied
. if E(é,z") < o (Davidson, 1994, theorem (12.10)). Now, from Minkowski’s
{6Ay, _oAy) o [BAyer dAy-a| inequality and repeated substitution,
= —a _ -
e, B, | '\ e de.; |

E@) < (Ayihy + 1GA vl + (8- 12y

~ (5AYz—z _ Ay,

M T e tootkeke < (WA ygzy + k)
8A A aA 2 A
~ Yrj+1 Ye- PO ~ Y-, =
e (_'_'_*_ - e,k —, 7 )MZ“
o€, ; €, d€;..
< o

where ko =60 + 3008 D&y = | — (1 — (L + G-, and

= (8G,/9&)&1G)). since [lefl, < o implies | A yl;, < . Thus, from Andrews WLLN, we have

Usmg Ay, =€ + (ap — DEZla) (1 — g,-))€,-,, we have
r T

ag,—; ) r 2] log f’(-yl’q>)£_'l':(7hl 2 log fi ¥, &)
€ 1= =1

= (ap — Dl — aof D (1 @ e,

de.;
- ) . 99~ foré:::;i‘gefaqr’r.lwn value expansion of | ' =
- l)(oz{,_z _ %_3) (1 - Ew‘) pansion of log f(y', ¢) around ¢ = ¢,
S ! . log f(¥', ) = log fi(¥", 92 = (V, log £i(¥' e))*(¢ — @2
LR o AT AT ST IR b (l - :)—e-,_: F~:—i) where * indicates evaluation of the derivative at a point between ¢ and ¢,.
Thus, we have, for ¢ = o,
Ttk @ ke [log 3%, 1) = log £, 9| = (W, log /(¥ @1*He: — 9

which implies that where {x) denotes the Euclidean norm of the vector x. To use the ULLN of
Wooldridge (1994), we define ¢,(y") = sup,ev (V, log £i( ¥, ¢)} and show
P PR e that it satisfies a WLLN. We have
e <'aﬂ_ 1”“(1_‘1”0!0 +kr‘lc¢{)3+kr—lkr—2a€)4
=il

+oeen ok E!’IA:I—I v Elja 2| -+ 'Vl:fj)‘lrfj).

+lag = U ksden o gd 10 = (1 + Mg

P ~ - ‘ Consider

+ ke kg - o - k| Ry — &1
Now, the function (1 + ), is bounded above by 9/8 and is positive [W,l < 1By | + (1 — &) B i
wp 1. Thus, there exists a constant k such that |k} < & < 1 wp 1 for all 1. (¥ + &2 ,)°
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Now
’ &, ‘ 33 1
g+ 2l 165 F

and [B,-,| < 1 wp 1, which implies |w,| < kW, | + (1 — &)y~ 2 wp 1.
Then, since wy = 0 wp 1, we have

(1—a)

—=<owplVpEVT
Y ¥

RS
Similarly for 7, we have

.
o] = E P |G- = Aemil
i=1

I3
< 2 (&l + By
i=1
Now consider

|&] = |ay|+|&aAy|+ |él—]€l—l}

=|Ay|+ Z‘Ay'ﬂl + Elér—x‘

\/\
M-

|A}’r—’

I
=

—=i—1

Flem @~ 1 2 ol
=1

220 (le, i+ oo ~ 1] E o q

=23 Fle. | + K,
=0

i
&)

= G- )1 -

[}
<

A

where K, is 2 finile constant.
Thus, we have

Volog fly, &) s ———=|¢&| t5 fv,lle.l + 5 1&f

k)J'
1—-a L
S—-———:—,.‘(szile,.,i| +K

& - kyyyl S

%1 —

1 ! . —i _ [ _
+ =2 XD Wil + 2 K le] + K2
G\ =1 j=0 =1

'
x 22F|€ki‘ + K,
i=1

1 !
+_Pz
gl =

B 2
Fle |+ K| =a(,

i=

where ¢(y) = Kal(oy + K + (o, + ZhKor + K)oy, + K) +
(c1, + K))?) with ¢, = 25!_ok'|€,.;| and K, and K; finite constants. Now
consider

.
lew = EculF Emle = 2‘ | [
i 4

;
=2 2 Flek

THE REVIEW OF ECONOMICS AND STATISTICS

Thus ¢, is L,-NED with &, = |e]|; and {,, = 372, \&'. It follows that c?, is
L,-NED and, since [[€};, < % for some p > 1, ¢i is also uniformly
integrable. Thus ¢,{y"), which is a function of ¢}, obeys the WLLN in
Andrews (1988, theorem (1)).

We can now assert that {log £{ y', ¢)] satisties the ULLN in Wooldridge
(1994, theorem (4.2)) and thus, from theorem (4.3) of Wooldridge (1994),

we have & 2 ¢q. Q.E.D.

Proof of Theorem 6:

Consider a first-order mean value expansion of the first-order condition
around ¢y. Define ViL( ¥7, ) as the hessian. The mean value expansion
yields

VL §) = 0= VLY, ¢0) + ViLOT, @) — ¢0)

where Vi]:(yT. ¢) has each row evaluated at a mean value (possibly
different for each row) lying between § and ;. We can rearrange to get

VT @ = @o) = Hy ' TPV,LG7T, go) + (=T 'V2E(T, @)
= Ho"WT2V,L(Y. go)
= Hy'T "V L(yT, go) + 0,(1).
To verify this, we need to show that the hessian obeys a uniform law of

large numbers (ULLN).
We partition the scores vector 7712V L(y 7, p) as

T
g2 2 €,
(]
r >

o 3T |/22 (6’2 —a?)

=1

T I’ZV“,L( ¥, @) =

where 5, = (w,, ;)" as defined in equations (15) through (17). Similarly, we
partition the hessian into the matrix

[H . H ,}
H=
H H,
and consider each of the components &, H,, and H, separately. As in the
proof of theorem {5), showing that H satisfies a ULLN requires verification
of two conditions (Wooldridge, 1994, theorem (4.2)). First, we show that
the elements of A have summands that are L,-NED on {e,| and satisfy the
WLLN in Andrews (1988, theorem (1)) for each ¢ € W, Second, we
require existence of some matrix function ¢, y') that satisfies a WLLN and
has the property that [A(y', @) — A(¥', ¢2)} = (N1 — @2} for all @y,
@, € ¥, where h(y', ¢,) denotes the summands of H.

For some € ¥, consider

—TWVL(Y, ¢) =

o a3,
H.=—Z(;";+§, ')

eL-IP)

where @y, = (yn). We showed in the proof of theorem (5) that €] is
L,-NED on lg}, and we show below that {5} and [35/0%1,| are L,-NED on
le). It then follows from Davidson (1994, theorem (17.9)) that the
summands of H, are L,-NED on je}.

Recall that 5, = (w,. ,)’. As in the proof of theorem (5), consider a
function W}, which is an .7 {__-measurable approximation w, detined such
that a first-order Taylor expansion produces

. aw,\*
W, — le" = 2 (_
jEmt]

€,
J€,_

Copyright © 1999. All rights reserved.



STOCHASTIC PERMANENT BREAKS

where * indicates that the derivatives are evaluated at points between 0 and
€;-;. Now,

aw, -
=b_

‘)Wr 1 651»1 881 3'75:2—| -

&) 08
08y 0€;

(F+eE) dey

+ W,

ae,_ J ' 9e,-; J

where g, is as defined in the proof of theorem (5). Now, since there exists
k< 1suchthatb,_, <k wp 1 for all r, we have

oW, - 514—1) 98,1
— - ——|wp .

W& F+E)

b,y 3yE,
Wyl T

1 1
d€,; 1-% d€;

Note that |,| is bounded wp | (see the proof of theorem (5)) and that

ab,-, 677, — 27€,
—— = (l — &) ——————{<owpl.
% GHeaf
This leads to
a“.’l ag-l—l
— =< K, wpl
o€, | 0€,;

for some K, < . Thus,

NTEraY
I, — E(Wzlyﬁm)"z—— E (”—] €y
=mt1 |[\D€-
t ag-l »
—| &
o€

=K, 2
=K, 2 G+ Dl e
j=m+

2

J=m+l 2

from the proof of theorem (5). It follows that, since [le, < * and
limye 2f_,.)(J + 2K = 0, W] is L,-NED on [¢} (Davidson, 1994,
definition (17.1)).

Similarly, we have

a7, ‘ L b, 08 & (&L, +39)051  9A¥.,
= D V-
3E,_; ! o€, ! 'aa,_. 3., F+& )P Oy d€,—;
= i I abr :agr ~f i, élz-'i(glz~—i +3%) ('78717:' Ay,
<5 o, — F+E) de,; ey
LA -
=Ky 2, Ko .'+sz) + 2 E
=1 —i| =1 O€,;

1]
SR + DK 2, K 5] + Ko) + ¥
i=1
for some finite constants K,; and K;. As for w,, we can write
a5 \*
— e
dey 7|z
Then, expressing v as a function of €, as in the proof of theorem (5), and

using the fact that |je/l,,, < o for some p > 1 leads to the result that {3} is
L,-NED on [g,}.

'

15 = EGL7 mlh = 2

jEmt ]
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Now 09§5/0%;; is a symmetric 2 X 2 matrix with the following
components:

o W dby N
To=by ot W (&)

9y oy @ F+E)

398, — & _
—1- N,
&+ 5:—1)

oW, 85 . 86-, @by e,
vl v e

aa oy ay Yy (¥ + & ,_1)2

39e, + &,
_———-_wl—lv
G+

03, - dvr- 8by4

—=b_ -t %

i i1 aa

where

3b,- ) Y- E, 6V%€.-1 — 2¥¢;
——={1-a -(1-a 5 W1,
i F+E, F+& )y
by 3+ &8, N i 298,
= e = (] = @) G,
& (g+E,y G+Ey

By processing in a manner analogous to that for w, and », above, we can
show that the elements of {35/8@,;| are L,-NED on le]. Thus, from
Davidson (1994, theorem {17.9)), the summands of H; are L,-NED on [e}.
Further, since §, 35/0$,; and & have more than two finite moments, we can
invoke the WLLN in Andrews (1988, theorem (1)). Thus, we have H, —
EH) L 0foreachp € V.

Now the (1, 1} element of the matrix H, is

Hu= s S+

Tl

w) 1 ET: n
av = T ~ 111
Consider a mean value expansion of h, around ¢ = §

Ao — i{:n = (anhm)*/(ﬁp - )

where * indicates evaluation of the scores function at a point between ¢
and §. We have, for ¢ = $,

thay = B = (T 50 (6 - @),

where (x) denotes the Euclidean norm of the vector x. Note we must show
that there exists a function ¢,;;(y'} independent of ¢ that satisfies a WLLN
and has the property that (Vhl) = c(y). The elements of Vh,, for
some ¢ =  are as follows:

dha| L[ aw, e, oW, «
—| = — |25, — + & — + Kiy + Kok,
E™ 52 W, a9 a‘y Wi 39 | 1o 2y ll
ok |1 o, Pw, oW, .
o] "l s Saay T aa) = 1K T K
k| {2, o i

ek +€r;;{- = [Kig + Kok
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where K;; < ° are constants independent of ¢. The inequalities follow from
wp 1 boundedness of the terms in parentheses and imply that there exist
finite constants K, K, and K, such that

(Vo) < 1Ko + Ki& + Ko7
for all § € ¥. Now since |Ky + K& + K€ obeys 2 WLLN (from the
proof of theorem (5)), the ULLN in Wooldridge (1994, theorem (4.2))
holds for the (1, 1) element of H,. Although terms involving 1, are not
bounded wp 1, we can use arguments similar to those above and in the
proof of theorem (S) to show that a function c, exists for the other elements
of Hy. It follows that H, — £(#,) -2 0 uniformly on ¥

Consider

1 T
Hy=— 2 (3e¥52— 1.
: TG";( ‘ !

Since &2 > 0 and since we showed in theorem (5) that €% obeys a ULLN,

we can assert that H, — E(H,) £ 0 uniformly on .
Consider

Since both (5} and (€] are L,-NED on [e,}, we have from Davidson (1994,
theorem (17.9)) that {5} is L;-NED on [e,} and satisfies Andrew’s WLLN.
Further, using arguments similar to those above and the fact that {7
satisfies a WLLN, we can show that there exists a function ca(y")
independent of ¢ that satisfies a WLLN and has the property that |A;( y',
9 = (', ) = cp(yNe) — @) for all ¢y, ¢; € ¥, where hy( ¥, ¢1)
denotes the summands of Hy. Thus, Hy — E(H3) 20 uniformly on W,

From lhe above arguments, we have that 7-1V2 LT @) — E(T™ ‘V2L X
(y7, ) = 0 uniformly on W, and we must now venfy that (=7~ 'VZL(y
@) — Ho = 0. Consider

(—TTIVLL(Y", &) ~ Ho = (—T"'VIL(Y, §)
= E(~T 'V LT, $)
+(BCT7'VIL(yT.8)) — Ho).

Now, the first term goes to zero from the above ULLN. Since T- ‘V2
L(y7, g} is a continuous function of ¢, consistency of ¢ for ¢, ensures that
the second term goes to zero in probablhty (White, 1984, proposition
(2][)) Thus, (— T ‘WL(y &) — Hy Do, which implies that (—7~ ‘V2
Ly, @) — Hy % 0 Gmce the arguments of L(y7, ¢) always lie between &
and ¢

THE REVIEW OF ECONOMICS AND STATISTICS

Note at this point that

2 Es,s,

Tn'(7 =1

P
Hy =E — 2 (s,s’, + e, )
Tag P12

=1

T 2
{ 5 2 Beial — ) — and
0’ =]

To

Ese,

Hy=E (*
0’0 1=
from the martingale difference property of e, .7 }.
Now consider

—g2 12
o, T~ Es,e,

A’VO““2T””2V¢L(yT, 00) = NV2

55T S @ - o
=1
T
=\VRToR E z
=1

where A"k = 1. We use the central-limit theorem for mixingales in theorem
(1) of de Jong (1997) to show that A’V '?7-1257 7, & N0, 1). It then
follows from the Cramér-Wold device (White, 1984, proposition (5.1)) that
vy 'PT-125T 7, L N(O, I). For all m > 0, we can utilize the martingale
difference property of {s€,, .7/ | to obtain

BV T 2217l = |ENS T~ %07 (6] — o) wh
=21+ Doy MT eI el
from Davidson (1994, theorem (14.2)), where A% denotes the third element
of the vector A’V and p > 1. Thus, since ||€?|,, < ® and a(m) is of
size pf{p — 1), the sequence (\'Vy V2T 12Z, 1,]15 an L,-mixingale of size
—1/2 with mixiangle indices ar, = 2(1 + 2)oNIT- Wlle,’ll,,, The as-

sumptlon that || € Il;, < o= is then sufficient for the remaining conditions of
de Jong’s Theorem. Thus, we have

V‘;mT— qu,L(_vT. ‘Pu) 2, N(O, 1)’

and the result follows. Q.E.D.
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