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Abstract
A volatility model must be able to forecast volatility; this is the central
requirement in almost all financial applications. In this paper we outline
some stylized facts about volatility that should be incorporated in a model:
pronounced persistence and mean-reversion, asymmetry such that the sign of
an innovation also affects volatility and the possibility of exogenous or
pre-determined variables influencing volatility. We use data on the Dow
Jones Industrial Index to illustrate these stylized facts, and the ability of
GARCH-type models to capture these features. We conclude with some
challenges for future research in this area.

1. Introduction
A volatility model should be able to forecast volatility.
Virtually all the financial uses of volatility models entail
forecasting aspects of future returns. Typically a volatility
model is used to forecast the absolute magnitude of returns,
but it may also be used to predict quantiles or, in fact, the entire
density. Such forecasts are used in risk management, derivative
pricing and hedging, market making, market timing, portfolio
selection and many other financial activities. In each, it is the
predictability of volatility that is required. A risk manager
must know today the likelihood that his portfolio will decline
in the future. An option trader will want to know the volatility
that can be expected over the future life of the contract. To
hedge this contract he will also want to know how volatile
is this forecast volatility. A portfolio manager may want to
sell a stock or a portfolio before it becomes too volatile. A
market maker may want to set the bid–ask spread wider when
the future is believed to be more volatile.

There is now an enormous body of research on volatility
models. This has been surveyed in several articles and
continues to be a fruitful line of research for both practitioners
and academics. As new approaches are proposed and tested, it
is helpful to formulate the properties that these models should
satisfy. At the same time, it is useful to discuss properties that
standard volatility models do not appear to satisfy.

We will concern ourselves in this paper only with the
volatility of univariate series. Many of the same issues will
arise in multivariate models. We will focus on the volatility of

asset returns and consequently will pay very little attention to
expected returns.

1.1. Notation

First we will establish notation. LetPt be the asset price at time
t and rt = ln(Pt )−ln(Pt −1) be the continuously compounded
return on the asset over the period t − 1 to t . We define the
conditional mean and conditional variance as:

mt = Et−1[rt ] (1)

ht = Et−1[(rt − mt)
2] (2)

where Et−1[u] is the expectation of some variable u given the
information set at time t−1 which is often denoted E[u|�t−1].
Without loss of generality this implies that Rt is generated
according to the following process:

Rt = mt +
√
htεt , where Et−1[εt ] = 0 and Vt−1[εt ] = 1.

In this paper we are often concerned with the conditional
variance of the process and the distribution of returns. Clearly
the distribution of ε is central in this definition. Sometimes a
model will assume:

{εt } ∼ i.i.d.F ( ) (3)

where F is the cdf of ε.
We can also define the unconditional moments of the

process. The mean and variance are naturally defined as

µ = E[rt ], σ 2 = E[(rt − µ)2] (4)
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and the unconditional distribution is defined as

(rt − µ)/σ ∼ G (5)

where G is the cdf of the normalized returns.
A model specified as in equations (1), (2) and (2) will

imply properties of (4) and (5) although often with considerable
computation. A complete specification of (4) and (5) however,
does not imply conditional distributions since the degree of
dependence is not formulated. Consequently, this does not
deliver forecasting relations. Various models for returns and
volatilities have been proposed and employed. Some, such
as the GARCH type of models, are formulated in terms
of the conditional moments. Others, such as stochastic
volatility models, are formulated in terms of latent variables
which make it easy to evaluate unconditional moments and
distributions but relatively difficult to evaluate conditional
moments. Still others, such as multifractals or stochastic
structural break models, are formulated in terms of the
unconditional distributions. These models often require
reformulation to give forecasting relations.

Higher moments of the process often figure prominently
in volatility models. The unconditional skewness and kurtosis
are defined as usual by

ξ = E[(rt − µ)3]

σ 3
, ζ = E[(rt − µ)4]

σ 4
. (6)

The conditional skewness and kurtosis are similarly defined

st = Et−1[(rt − mt)
3]

h
3/2
t−1

, kt = Et−1[(rt − mt)
4]

h2
t−1

. (7)

Furthermore, we can define the proportional change in
conditional variance as

variance return = ht − ht−1

ht−1
. (8)

Some of the variance return is predictable and some is an
innovation. The volatility of the variance (VoV) is therefore
the standard deviation of this innovation. This definition is
directly analogous to price volatility:

VoV =
√
V (variance return). (9)

A model will also generate a term structure of volatility.
Defining ht+k|t ≡ Et [r2

t+k], the term structure of volatility is
the forecast standard deviation of returns of various maturities,
all starting at date t . Thus for an asset with maturity at time
t + k, this is defined as

νt+k|t ≡
√√√√Vt

(
k∑

j=1

rt+j

)
∼=
√√√√ k∑

j=1

Et

(
r2
t+j

)
. (10)

The term structure of volatility summarizes all the forecasting
properties of second moments. From such forecasts, several
specific features of volatility processes are easily defined.

1.2. Types of volatility models

There are two general classes of volatility models in
widespread use. The first type formulates the conditional
variance directly as a function of observables. The simplest
examples here are the ARCH and GARCH models which will
be discussed in some detail in section 3.

The second general class formulates models of volatility
that are not functions purely of observables. These
might be called latent volatility or (misleadingly) stochastic
volatility models. For example, a simple stochastic volatility
specification is:

rt = mt +
√
νtεt

νt = ων
β

t−1 exp(κηt )

εt , ηt ∼ in(0, 1).

Notice that ν is not simply a function of elements of the
information set of past returns, and therefore it cannot be
the conditional variance or the one step variance forecast.
Intuitively, this happens because there are two shocks and only
one observable so that current and past ν are never observed
precisely. The conditional variance in this model is well
defined but difficult to compute since it depends on a nonlinear
filtering problem defined as (2).

Latent volatility models can be arbitrarily elaborate with
structural breaks at random times and with random amplitudes,
multiple factors, jumps and fat-tailed shocks, fractals and
multifractals, and general types of nonlinearities. Such
models can typically be simulated but are difficult to estimate
and forecast. A general first-order representation could be
expressed in terms of a latent vector 
ν and a vector of shocks

η.

rt = mt +
√
ν1,t εt


νt = f (
νt−1, 
ηt )(
ε


η
)

∼ G.

This system can be simulated if all the functions and
distributions are known. Yet the forecasts and conditional
variances must still be computed. Many of the stylized facts
about volatility are properties of the volatility forecasts so a
model like this is only a starting point in checking consistency
with the data.

2. Stylized facts about asset price
volatility
A number of stylized facts about the volatility of financial asset
prices have emerged over the years, and been confirmed in
numerous studies. A good volatility model, then, must be able
to capture and reflect these stylized facts. In this section we
document some of the common features of asset price volatility
processes.
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2.1. Volatility exhibits persistence

The clustering of large moves and small moves (of either sign)
in the price process was one of the first documented features
of the volatility process of asset prices. Mandelbrot (1963)
and Fama (1965) both reported evidence that large changes in
the price of an asset are often followed by other large changes,
and small changes are often followed by small changes. This
behaviour has been reported by numerous other studies, such
as Baillie et al (1996), Chou (1988) and Schwert (1989). The
implication of such volatility clustering is that volatility shocks
today will influence the expectation of volatility many periods
in the future. Figure 2, which will be described in the following
section, displays the daily returns on the Dow Jones Industrial
Index over a twelve-year period and shows evidence that the
volatility of returns varies over time.

To make a precise definition of volatility persistence, let
the expected value of the variance of returns k periods in the
future be defined as

ht+k|t ≡ Et [(rt+k − mt+k)
2]. (11)

The forecast of future volatility then will depend upon
information in today’s information set such as today’s returns.
Volatility is said to be persistent if today’s return has a large
effect on the forecast variance many periods in the future.
Taking partial derivatives, the forward persistence is:

θt+k|t = ∂ht+k|t
∂r2

t

. (12)

This is a dimensionless number as squared returns and
conditional variance are in the same units.

For many volatility models this declines geometrically but
may be important even a year in the future. A closely related
measure is the cumulative persistence, which is the impact of
a return shock on the average variance of the asset return over
the period from t to t + k. It is defined as

φt+k|t = ∂
(

1
k
(ht+k|t + ht+k−1|t + . . . + ht+1)

)
∂r2

t

= 1

k
(θt+k|t + θt+k−1|t + . . . + θt+1|t ). (13)

The response of long-term option prices to volatility shocks
suggests that volatility models should have significant
cumulative persistence a year in the future.

A further measure of the persistence in a volatility model is
the ‘half-life’ of volatility. This is defined as the time taken for
the volatility to move halfway back towards its unconditional
mean following a deviation from it:

τ = k :
∣∣ht+k|t − σ 2

∣∣ = 1
2

∣∣ht+1|t − σ 2
∣∣ . (14)

2.2. Volatility is mean reverting

Volatility clustering implies that volatility comes and goes.
Thus a period of high volatility will eventually give way to
more normal volatility and similarly, a period of low volatility
will be followed by a rise. Mean reversion in volatility is

generally interpreted as meaning that there is a normal level
of volatility to which volatility will eventually return. Very
long run forecasts of volatility should all converge to this same
normal level of volatility, no matter when they are made. While
most practitioners believe this is a characteristic of volatility,
they might differ on the normal level of volatility and whether
it is constant over all time and institutional changes.

More precisely, mean reversion in volatility implies that
current information has no effect on the long run forecast.
Hence

plim
k→∞

θt+k|t = 0, for all t (15)

which is more commonly expressed as

plim
k→∞

ht+k|t = σ 2
t < ∞, for all t (16)

even though they are not quite equivalent.
It is possible to generalize the concept of mean reversion to

cover processes without finite variance. Consider some other
statistic such as the interquartile range or the 5% quantile
and call it qt . The same definitions in (12), (15) and (16)
can be used to describe persistence and mean reversion. The
cumulative versions however typically do not have the same
simple form as (13), see for example the CAViaR model of
Engle and Manganelli (1999).

Options prices are generally viewed as consistent with
mean reversion. Under simple assumptions on option pricing,
the implied volatilities of long maturity options are less volatile
than those of short maturity options. They usually are closer to
the long run average volatility of the asset than short maturity
options.

2.3. Innovations may have an asymmetric impact on
volatility

Many proposed volatility models impose the assumption that
the conditional volatility of the asset is affected symmetrically
by positive and negative innovations. The GARCH(1,1)
model, for example, allows the variance to be affected only by
the square of the lagged innovation, completely disregarding
the sign of that innovation.

For equity returns it is particularly unlikely that positive
and negative shocks have the same impact on the volatility.
This asymmetry is sometimes ascribed to a leverage effect and
sometimes to a risk premium effect. In the former theory, as the
price of a stock falls, its debt-to-equity ratio rises, increasing
the volatility of returns to equity holders. In the latter story,
news of increasing volatility reduces the demand for a stock
because of risk aversion. The consequent decline in stock value
is followed by the increased volatility as forecast by the news.

Black (1976), Christie (1982), Nelson (1991), Glosten
et al (1993) and Engle and Ng (1993) all find evidence of
volatility being negatively related to equity returns. In general,
such evidence has not been found for exchange rates. For
interest rates a similar asymmetry arises from the boundary
of zero interest rates. When rates fall (prices increase), they
become less volatile in many models and in most empirical
estimates, see Engle et al (1990b), Chan et al (1992) and
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Brenner et al (1996). In diffusion models with stochastic
volatility, this phenomenon is associated with correlation
between the shock to returns and the shock to volatility.

The asymmetric structure of volatility generates skewed
distributions of forecast prices and under simple derivative
pricing assumptions, this gives option-implied volatility
surfaces which have a skew. That is, the implied volatilities of
out-of-the-money put options are higher than those of at-the-
money options, which in turn are higher than the implieds of
in-the-money puts.

2.4. Exogenous variables may influence volatility

Most of the volatility characteristics outlined above have
been univariate, relating the volatility of the series to only
information contained in that series’ history. Of course, no-one
believes that financial asset prices evolve independently of the
market around them, and so we expect that other variables may
contain relevant information for the volatility of a series. Such
evidence has been found by, inter alia, Bollerslev and Melvin
(1994), Engle and Mezrich (1996) and Engle et al (1990a,b).

In addition to other assets having an impact on the
volatility series, it is possible that deterministic events
also have an impact. Such things as scheduled company
announcements, macroeconomic announcements and even
deterministic time-of-day effects may all have an influence
on the volatility process. Andersen and Bollerslev (1998a),
for example, find that the volatility of the Deutsche Mark–
Dollar exchange rate increases markedly around the time of
the announcement of US macroeconomic data, such as the
Employment Report, the Producer Price Index or the quarterly
GDP. Glosten et al (1993) find that indicator variables for
October and January assist in explaining some of the dynamics
of the conditional volatility of equity returns.

2.5. Tail probabilities

It is well established that the unconditional distribution of
asset returns has heavy tails. Typical kurtosis estimates range
from 4 to 50 indicating very extreme non-normality. This is
a feature that should be incorporated in any volatility model.
The relation between the conditional density of returns and
the unconditional density partially reveals the source of the
heavy tails. If the conditional density is Gaussian, then the
unconditional density will have excess kurtosis due simply to
the mixture of Gaussian densities with different volatilities.
However there is no reason to assume that the conditional
density itself is Gaussian, and many volatility models assume
that the conditional density is itself fat-tailed, generating still
greater kurtosis in the unconditional density. Depending on
the dependence structure of the volatility process, the returns
may still satisfy standard extreme value theorems.

2.6. Forecast evaluation

Establishing the effectiveness of a volatility forecast is not
straightforward since volatility itself is not observed. The
method most consistent with the estimated models is simply to
take each return divided by its one-step-ahead forecast standard

deviation and then apply any type of test to see if the square of
this variable is predictable.

An alternative type of test is to examine the forecast
accuracy of the model in predicting ‘realized volatility’, future
values of sample variances. For a one-period problem, this
amounts to regressing squared returns on a constant and the
conditional variance. The test is whether the intercept is zero
and the slope is one. Various forecasts can be entered into this
equation to determine which is the best:

r2
t = a + bht + ut . (17)

This approach is not recommended for several reasons.
Because r is heteroskedastic, r2 will be much more
heteroskedastic; hence this regression will be very inefficient
and will have misleading standard errors. Robust standard
errors should be used, however these may not make an
adequate adjustment. Correcting for the heteroskedasticity
would involve dividing both sides by h, leading simply to the
original approach.

A second drawback is that r2 is a noisy estimate of
the volatility to be estimated. Hence the maximum R2

that can be achieved by this regression, if all is perfectly
correct, is very low. To improve this, investigators may use
volatility measured over longer periods such as weekly or
monthly realized volatilities. When non-overlapping periods
are used, the sample becomes much smaller, and when
overlapping data are used, the standard errors become far more
problematic. See for example Stock and Richardson (1989).
Andersen and Bollerslev (1998b) proposed using a measure
of realized volatility based on observations within the period.
For forecasting daily volatility, they used 5 minute data to
construct a daily volatility. This improves the efficiency of this
regression greatly. There is however a limit as high frequency
data have lots of potential pitfalls due to bid–ask bounce and
irregular spacing of the price quotes.

A third drawback to this approach is that it measures
the level of variance errors rather than the more realistic
proportional errors. This criterion will assess primarily the
performance for high volatilities. A solution might be to
take logs of the realized volatility and its forecast. For more
discussion see Bollerslev et al (1994).

3. An empirical example
To illustrate the above points, we now present a concrete
example. We use daily close price data on the Dow Jones
Industrial Index, over the period 23 August 1988 to 22 August
2000, representing 3131 observations1. The Dow Jones
Industrial Index is comprised of 30 industrial companies’
stocks, and represent about a fifth of the total value of the US
stock market. We take the log-difference of the value of the
index, so as to convert the data into continuously compounded
returns. Figures 1 and 2 plot the price level and the returns on
the index over the sample period.

1 These data in ASCII format are available from the second author’s web site
at http://www.econ.ucsd.edu/∼apatton/dowjones.txt .
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Figure 1. The Dow Jones Industrial Index, 23 August 1988 to 22
August 2000.
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Figure 2. Returns on the Dow Jones Industrial Index.

3.1. Summary of the data

Some summary statistics on the data are presented in table 1.
As this table shows, the index had a small positive average
return of about one-twentieth of a per cent per day. The
daily variance was 0.8254, implying an average annualized
volatility of 14.42% . The skewness coefficient indicates
that the returns distribution is substantially negatively skewed;
a common feature of equity returns. Finally, the kurtosis
coefficient, which is a measure of the thickness of the tails
of the distribution, is very high. A Gaussian distribution has
kurtosis of 3, implying that the assumption of Gaussianity for
the distribution of returns is dubious for this series2.

An analysis of the correlogram of the returns, presented
in figure 3, indicates only weak dependence in the mean of
the series, and so for the remainder of the paper we will

2 The Jarque–Bera test for normality of the returns distribution yields a
statistic of 4914.116, much greater than any critical value at conventional
confidence levels, thus rejecting the null hypothesis of normally distributed
returns.
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Figure 3. Correlograms of returns and squared returns.

assume a constant conditional mean. The correlogram of the
squared returns, however, indicates substantial dependence in
the volatility of returns.

3.2. A volatility model

A widely used class of models for the conditional volatility
is the autoregressive conditionally heteroskedastic class of
models introduced by Engle (1982), and extended by
Bollerslev (1986), Engle et al (1987), Nelson (1991), Glosten
et al (1993), amongst many others. See Bollerslev et al (1992)
or (1994) for summaries of this family of models.

A popular member of the ARCH class of models is the
GARCH(p, q) model:

ht = ω +
p∑

i=1

αi(Rt−i − µ)2 +
q∑

j=1

βjht−j . (18)

Table 1. Dow Jones Industrial Index returns summary statistics.

Mean 0.0550
Variance 0.8254
Skewness −0.5266
Kurtosis 9.0474
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Figure 4. Estimated conditional volatility using a GARCH(1,1)
model.

This model can be estimated via maximum likelihood once
a distribution for the innovations, εt , has been specified. A
commonly employed assumption is that the innovations are
Gaussian3.

Using the Schwarz Information Criterion we found that
the best model in the GARCH(p, q) class for p ∈ [1, 5] and
q ∈ [1, 2] was a GARCH(1,1). The results for this model are
presented in table 2.

A test for whether this volatility model has adequately
captured all of the persistence in the variance of returns
is to look at the correlogram of the standardized squared
residuals. If the model is adequate, then the standardized
squared residuals should be serially uncorrelated. The Ljung-
Box Q-statistic at the twentieth lag of the standardized squared
residuals was 8.9545, indicating that the standardized squared
residuals are indeed serially uncorrelated.

3.3. Mean reversion and persistence in volatility

The results above indicate that the volatility of returns is quite
persistent, with the sum of α and β being 0.9904, implying
a volatility half-life of about 73 days. Although the returns
volatility appears to have quite long memory, it is still mean
reverting: the sum of α and β is significantly less than one4,
implying that, although it takes a long time, the volatility
process does return to its mean. The unconditional mean of
the GARCH(1,1) process is calculated as the ratio of ω to the
difference between 1 and the sum of α and β. For the Dow
Jones over the sample period this turns out to be 0.8542, which
implies that the mean annualized volatility over the sample was
14.67%, very close to the sample estimate of the unconditional

3 Bollerslev and Wooldridge (1992) showed that the maximum likelihood
estimates of the parameters of the GARCH model assuming Gaussian
errors are consistent even if the true distribution of the innovations is not
Gaussian. The usual standard errors of the estimators are not consistent when
the assumption of Gaussianity of the errors is violated, so Bollerslev and
Wooldridge supply a method for obtaining consistent estimates of these.
4 A one-sided t-test that the sum of alpha and beta is greater than or equal to
one yields a test statistic of −2.54, which is greater (in absolute value) than
the 5% critical value of −1.96.
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Figure 5. θ and φ for k ranging from 1 to 100.

volatility given in table 1. A plot of the annualized conditional
volatility estimates over the sample period is given in figure 4.

As described in section 2.1, a measure of the persistence
in volatility is the partial derivative of the overnight return
volatility at time t +k with respect to the squared return at time
t , denoted θt+k,t . A plot of θt+k,t for k ranging from 1 to 100
is given in figure 5. This plot shows that the impact decays
geometrically, and is essentially zero beyond one hundred
days. The limit of this sequence is zero, confirming that this
volatility process is mean reverting. The equivalent measure
for the volatility of k-period returns, denoted φt+k,t in section
2.1, also declines toward zero, though at a slower rate, as
equation (13) suggests that it should.

An alternative way to observe the mean-reverting
behaviour in ht is in the structure of long-term forecasts of
volatility. Figure 6 presents forecasts at 23 August 1995 and
23 August 1997 of the annualized daily return volatility out to
a year from each of those dates. The first of these forecasts
was made at a date with unusually high volatility, and so the
forecasts of volatility decline gradually to the unconditional
variance level. The second of these forecasts was made during
a tranquil period, and so the sequence of forecasts is increasing
toward the unconditional volatility level.

One way to examine the volatility of volatility, VoV, is to
plot the one-period-ahead volatility and the k-periods-ahead
forecast volatility. In figure 7 we present these forecasts for
the one-day, one-quarter, one-year and two-year cumulative
forecasts. It is immediately apparent that the movements in the
one-day horizon are larger than the movements in the two-year

Table 2. Results from the GARCH(1,1) model.

Coefficient Robust standard error

Constant 0.0603 0.0143
ω 0.0082 0.0025
α 0.0399 0.0104
β 0.9505 0.0105
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Table 3. Volatility of volatility for various forecast horizons from GARCH(1,1).

One day One quarter One year Two years

Standard deviation 51.19845 39.45779 22.52775 13.77907
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Figure 6. Forecasts of daily return volatility using the
GARCH(1,1) model.

horizon. The intermediate horizons lie between. This is an
implication of the mean reversion in volatility. The annualized
estimates of the volatility of volatility for these forecasts are
given in table 3.

3.4. An asymmetric volatility model

As mentioned in the previous section, the sign of the innovation
may influence the volatility in addition to its magnitude. There
are a number of ways of parametrizing this idea, one of which
is the Threshold GARCH (or TARCH) model. This model was
proposed by Glosten et al (1993) and Zakoian (1994) and was
motivated by the EGARCH model of Nelson (1991).

ht = ω+
p∑

i=1

αi(Rt−i−µ)2+
q∑

j=1

βjht−j +
r∑

k=1

δt−kγk(Rt−k−µ)2

(19)
where δt−k is an indicator variable, taking the value one if the
residual at time t − k was negative, and zero elsewhere.

Table 4. Results from the TARCH(1,1,1) model.

Coefficient Robust standard error

Constant 0.0509 0.0151
ω 0.0184 0.0024
α 0.0151 0.0070
γ 0.0654 0.0083
β 0.9282 0.0073
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Figure 7. Volatilities at different horizons from GARCH(1,1).

The TARCH model implies that a positive innovation at
time t has an impact on the volatility at time t+1 equal toα times
the residual squared, while a negative innovation has impact
equal to (α+γ ) times the residual squared. The presence of the
leverage effect would imply that the coefficient γ is positive,
that is, that a negative innovation has a greater impact than a
positive innovation.

We estimated the TARCH(1,1,1) model, and present the
results in table 4. These results indicate that the sign of
the innovation has a significant influence on the volatility of
returns. The coefficient on negative residuals squared is large
and significant, and implies that a negative innovation at time t

increases the volatility at time t + 1 by over four times as much
as a positive innovation of the same magnitude.

3.5. A model with exogenous volatility regressors

It may also be of interest to gauge the impact of exogenous
variables on the volatility process. This type of model could
offer a structural or economic explanation for volatility. Such

Table 5. Results from the GARCH(1,1)-X model.

Coefficient Robust standard error

Constant 0.0608 0.0145
ω −0.0010 0.0016
α 0.0464 0.0040
β 0.9350 0.0065
ϕ 0.0031 0.0005
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Table 6. GARCH(1,1) parameter estimates for data of differing frequencies.

Daily data 2-day period 3-day period 4-day period Weekly data

Constant 0.0603 0.1145 0.1715 0.2148 0.2730
ω 0.0082 0.0138 0.0304 0.0238 0.0577
α 0.0399 0.0419 0.0528 0.0416 0.0496
β 0.9505 0.9498 0.9358 0.9529 0.9408

a model may be written as:

ht = ω +
p∑

i=1

αi(Rt−i − µ)2 +
q∑

j=1

βjht−j + ϕXt−1. (20)

As an example, we used the lagged level of the three-month
US Treasury bill rate as an exogenous regressor in our model
of Dow Jones Industrial Index returns volatility. The T-bill rate
is correlated with the cost of borrowing to firms, and thus may
carry information that is relevant to the volatility of the Dow
Jones Industrial Index.

As the reader can see, the impact of the T-bill rate on
the volatility process of the Dow Jones Industrials is small, but
quite significant. The positive sign on this coefficient indicates
that high interest rates are generally associated with higher
levels of equity return volatility. This result confirms that of
Glosten et al (1993) who also find that the Treasury bill rate is
positively related to equity return volatility.

3.6. Aggregation of volatility models

Despite the success of GARCH models in capturing the salient
features of conditional volatility, they have some undesirable
characteristics. Most notably, the theoretical observation that
if a GARCH model is correctly specified for one frequency of
data, then it will be misspecified for data with different time
scales, makes a researcher uneasy. Similarly, if assets follow
a GARCH model, then portfolios do not exactly do so. Below,
we present some evidence of this for our example data set.
We consider the estimation of the simple GARCH(1,1) model
on the data, sampled at various frequencies. The results are
presented in table 6.

These results indicate that the sampling frequency does
indeed affect the results obtained. As an example, the implied
half-life of volatility implied by each of the models (in days)
is 73, 168, 183, 508 and 365. Clearly these are substantial
differences although the statistical and forecast significance
of these differences should be assessed. To some extent, the
interpretation of these models with aggregate data is slightly
different.

Ideas such as the weak GARCH specification of Drost
and Nijman (1993) may represent an alternative solution.
However, the empirical estimates on different time scales or
portfolios are typically reasonable, suggesting that GARCH
can be interpreted as an approximation or filter rather than a full
statistical specification. Steps in this direction are developed
by Nelson and Foster (1994).

4. Conclusions and challenges for future
research
The goal of this paper has been to characterize a good volatility
model by its ability to forecast and capture the commonly held
stylized facts about conditional volatility. The stylized facts
include such things as the persistence in volatility, its mean-
reverting behaviour, the asymmetric impact of negative versus
positive return innovations and the possibility that exogenous
or pre-determined variables may have a significant influence
on volatility.

We used twelve years of daily data on the Dow Jones
Industrial Index to illustrate these stylized facts, and the
ability of models from the GARCH family to capture these
characteristics. The conditional volatility of the Dow Jones
Industrial Index was found to be quite persistent, with a
volatility half-life of about 73 days, yet tests for non-
stationarity indicated that it is mean reverting. A negative
lagged return innovation was found to have an impact on
conditional variance roughly four times as large as a positive
return innovation, and the three-month US Treasury bill
rate was found to be positively correlated with volatility,
implying that higher interest rates lead to higher equity
return volatility. Finally, we found evidence consistent with
the theoretical result that the empirical results obtained are
dependent on the sampling frequency—a drawback of the
GARCH specification.

Various aspects of the volatility process are important
topics of research. The need for a model to forecast 100 or
even 1000 steps into the future has suggested long memory
or fractionally integrated processes. In spite of substantial
research input, the value for these forecast situations has
not yet been established. Shifts in the volatility process are
sometimes thought to be discrete events; only the Hamilton and
Susmel (1994) model and its extension by Gray (1996) have
been developed for this task. Time-varying higher conditional
moments are clearly of interest but have proven difficult to
estimate. Hansen (1994) and more recently Harvey and Sidiqui
(1999) have had some success.
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