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In this paper, we define dynamic and static factors and distinguish between the dynamic and 
static structure of asset excess returns. We examine the value-weighted market portfolio as a 
dynamic factor and propose an intuitively appealing procedure to search for more dynamic 
factors. We find evidence that the market is a dynamic factor but a three-dynamic-factor model 
is superior in modelling the decile portfolios. The two additional factors are correlated with a 
January dummy and Bond risk premium and with production growth and a recession dummy, 
respectively. We found that small firms are more sensitive to the January/Bond risk factor, while 
large firms are more sensitive to the Production/Recession factor. We found that after 
accounting for the systematic risk corresponding to the three dynamic factors, there is not much 
of a static component of asset risk premium and there is no evidence for a higher ‘unexplained’ 
return on small firm portfolios. 

1. Introduction 

The goal of asset pricing theory is to explain why different securities offer 
different risk premia (expected return minus a riskfree rate). In static models, 
the riskfree rate and the expected returns of securities are assumed to be 
time-invariant and hence the issue of interest is simply the cross-sectional 
differences in security risk premia. With mounting evidence of time-varying 
expected returns and time-varying variances and covariances, the level of 
complexity of the problem increases and so does the number of interesting 
questions. In the more general context, the risk premium of a security can be 
thought of as having a dynamic component that varies over time and a static 
component that is time-invariant. In this paper we ask whether the differ- 
ences in the risk premia are coming mainly form the dynamic component or 
from the static component and what influences the dynamic and static 
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components. These issues have very important implications on asset pricing 
and portfolio allocation. 

In this paper, we introduce a multi-factor model in which there are 
‘dynamic factors’ and ‘static factors’. The dynamic factors are related to the 
dynamic component of the vector of asset risk premia, while the static factors 
are related to the static component. Based on our model, we then explicitly 
investigate: (1) whether the value-weighted market portfolio is a dynamic 
factor, (2) whether there are other dynamic factors, (3) how important is the 
static component relative to the dynamic component of the vector of asset 
risk premia, (4) whether some asset pricing anomalies can be explained by 
our more general dynamic factor model, and (5) what are the relationships 
between dynamic factors and some macro-variables. 

The paper is organized as follows: after we setup the framework for 
analysis and define dynamic and static factors in the next section, we will 
define a dynamic market model as a special case of our factor structure in 
section 3. In section 4 we will examine the empirical validity of the dynamic 
market model using a vector of excess returns from ten-decile portfolios 
traded in the NYSE and the AMEX. In section 5, we further explore the 
existence of additional dynamic factors. We introduce an intuitively appeal- 
ing procedure to find dynamic factors and examine the dynamic behavior of 
some candidate dynamic factors. In section 6, we estimate a three-dynamic- 
factor model for the set of asset excess returns based on the candidate 
dynamic factors found in section 5. In section 7, we consider the relationship 
between our dynamic factors and some macro-variables. Section 8 concludes 
the paper. 

2. The framework of analysis 

2.1. A multi-factor model with dynamic factors 

Let yr be a vector of N asset excess returns (rates of return minus a 
riskfree rate). A typical multi-factor model is 

K 

y,=p.,+ c Pk.fkr+&r, 
k-1 

(1) 

where pI is the N x 1 vector of expected excess returns (or risk premia), K is 
the total number of factors, Pk (k = 1,. . . , K) are linearly independent 
(nonstochastic) N x 1 vectors of factor loadings, fkt (k = 1,. . . , K) are uncor- 
related random variables called the factors, and E, is the N X 1 vector of 
idiosyncratic noises. 
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Using an arbitrage argument similar to that in Ross (1976) or a consump- 
tion beta argument as in Engle, Ng, and Rothschild (19901, the vector of asset 
risk premia can be related to a set of factor risk premia. Furthermore, as the 
factors are uncorrelated, it is natural to assume that the risk premium of each 
factor is a function of the conditional volatility of the factor itself. Hence, the 
vector of asset risk premia can be written as 

K 

Pt = c Bk .n-k(ekt), 
k=l 

where B,, is the conditional variance of factor k at time t and rk(. > is a 
continuous function. 

Eq. (2) suggest a very natural way to classify factors into dynamic factors 
and static factors and to decompose the vector of asset risk premia into a 
dynamic component and a static component. First, a factor with constant 
conditional variance would have a constant factor risk premia and hence 
should have no effect on the dynamic behavior of individual asset risk 
premium. Such a factor can be called a static factor. On the contrary, a factor 
with time-varying conditional variance would generally have a time-varying 
factor risk premium and hence should play a role in determining the time 
series behavior of individual asset risk premia. Such a factor can be called a 
dynamic factor. 

Now, if we reorder the factors such that the first K, factors are dynamic 
and the remaining K-K, factors are static, then eqs. (1) and (2) can be 
rewritten as 

k=l j=K,+l 

(3b) 
where 

Kd 
pL(:= c pk’%-k(ekt) and p”= 5 p,‘+$). 

k=l j=K,+ 1 

In eq. (3b), ,x: is the dynamic component and pb is the static component of 
the vector of asset risk premia. 

The conditional covariance matrix of asset excess returns is 

(4) 
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where 

R= E pjp;ej+A 
j=K,+l 

is the constant part of the conditional covariance matrix, and A is the 
covariance matrix of the idiosyncratic noise of the asset excess returns. 

Under our structure, the dynamic behavior of the conditional covariance 
matrix of asset excess returns is driven solely by the dynamic behavior of the 
conditional volatility of the factors. If the conditional variance of the portfo- 
lios of assets that represent (or mimic) these factors follows individual 
GARCH processes, then the conditional covariance structure will reduce to 
the FACTOR-ARCH model introduced by Engle (1987) and examined by 
Engle, Ng, and Rothschild (1990) for the excess returns of Treasury bills. A 
more detailed description of the relationship between dynamic factors and 
factor-representing portfolios and the relationship between the covariance 
structure in eq. (4) and the FACTOR-ARCH model is given in Engle, Ng, 
and Rothschild (1990). We do not repeat the arguments here. 

2.2. A corresponding model with time-varying factor betas 

The model described above in which some factors have time-varying 
volatility but all factor betas are time-invariant can also be rewritten into a 
model in which the factors are normalized to have unit variance but the betas 
of the assets with respect to the factors are time-varying. If we define 

fk*, = fkt/&t 1 k= l,...,K,, 

f,T =fjt/@j, j =K,+l ,..., K, 

then the factor model (1) can be rewritten as 

K, 
Y,=P,+ Cgkf.fk*t+ 5 bj.f,T+E,> 

k=l j=K,+I 
(5) 

where g,, = /?kJekt (k = 1,. . . , Kd) are the time-varying factor betas and 
bj=P,Jej(j=Kd+l,..., K) are factor betas that are constant through time. 

With the new definition for the betas, the factor risk premia are 

?r k*~~~(~~r)/d~kr~ k=l,...,K,, 

$+ = rj( ej)/,ie,, j =K,+l,...,K. 
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The factor model under this alternative formulation has time-varying factor 
betas but with the standard zero mean unit variance factors. The dynamic 
factors, in this context, are again factors with time-varying risk premia. 
Moreover, individual assets have time-varying betas with respect to the 
dynamic factors but not the static factors. The conditional covariance matrix 
of asset excess returns under this time-varying factor beta formulation is also 
given by eq. (4). 

3. A dynamic market model 

Many researchers have found that the value-weighted stock market portfo- 
lio has time-varying return volatility. See, for example, French, Schwert, and 
Stambaugh (19871, Chou (19881, or the survey in this volume by Bollerslev, 
Chou, and Kroner (1991). Given the role of the traditional market model (or 
single-index model) in the asset pricing literature, it is interesting to ask (1) 
whether the market portfolio is in fact a dynamic factor, (2) whether it is the 
only dynamic factor, and (3) is it likely that we still have some static factors 
after the dynamic nature of the model has been taken into account? 

A multi-factor model with one dynamic factor which is the market and 
possibly several other static factors can be called a dynamic market model. 
Under the dynamic market model, the vector of excess returns can be written 
as 

K, 

Y,=Pt+tP,;fm,+ CP,.f,r-t% (5) 
j= I 

where f,,,, is the unanticipated component of the market excess return, p,, is 
the vector of market betas, f,r (j = 1,. . . , KS) are the static factors, and pj 
(j= l,..., K,) are vectors of factor loadings for the static factors. 

Let ~-,,,(f3,,) be the time-varying market risk premium which is a function 
of the conditional variance of the market excess return, 13,~~. The vector of 
risk premia, pr, is given by 

PI = P,Prn(~k,) + PLb> (7) 

where pLs is the static component of the vector of asset risk premia which is 
related to the risk premia of the static factors and the betas of the assets with 
respect to the static factors. 

The dynamic market model also has one other very interesting property, 
which is that the dynamics of the conditional covariance matrix of asset 
returns is driven solely by the conditional volatility of the market excess 
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COV(Y,,Y,) =&J$JJ,,+fl, (8) 

where R is the constant part of the conditional covariance matrix of asset 
excess returns. If A is the covariance matrix of the idiosyncratic noise of the 
assets, then 0 should be 

R= 2 pjp;e, +A. (9) 
j=l 

Schwert and Seguin (1990) independently proposed an apparently more 
general model which they called a single-index model of stock return het- 
eroskedasticity. They replace (8) with 

cov,-l(Yt~ Yt) =A, +~*%lt~ (8’) 

where A, and A, must be symmetric positive semidefinite square matrices. 
Because ymt = w’yI, for a set of market weights w (which in their case are 
equal weights), w’A,w = 0 and w’A,w = 1. Rewriting A, in its spectral 
representation with (nonnegative real) eigenvalues Ai and eigenvectors ci, 

N 

A, = c AiC$;, 
i=l 

so that w’A,w = 0 only if c{w = 0 for all nonzero hi. If follows immediately 
that A,w = 0. Hence, the vector of market betas, 

b, = covt-l(Yt,Ymr)/vart-l(Ymt) = WP + fL4+9/%t~ (10) 

is simply given by A,w. Schwert and Seguin estimate (8’) and (10) for a vector 
of returns of five equally-weighted size-ranked portfolios of NYSE common 
stocks from 1927 to 1986. They find evidence that the conditional variance of 
their size-ranked portfolios are affected by the time-varying conditional 
variance of the market. They also report evidence that A,w # 0, which they 
fail to interpret as evidence against their model and instead interpret as 
evidence for time-varying market betas. Quite surprisingly, they also find that 
the small firm anomaly is stronger in the dynamic context than in a static 
CAPM framework. We take these latter findings as evidence that the single- 
index model is too restrictive. This is consistent with the findings we report 
below and further motivates the search for additional dynamic factors. 
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4. Estimating and testing the dynamic market model 

4, I. Additional model specifications and estimation method 

In order to estimate and test the dynamic market model we need to specify 
the dynamics of 0,, and the functional form of r,,J19,,). A natural and 
convenient model is the GARCH-M model proposed in Engle, Lilien, and 
Robins (1987) which was applied to stock market data by French, Schwert, 
and Stambaugh (1987) and Chou (1988). Under a GARCH(l,l)-M model, 
0,, and r,Je,,> are given by 

where u,~ = y,, - r,,Je,,> and y,[ is simply the market excess return at 
time t. 

The completely specified system as described by eqs. (21, (31, (7), (lla), and 
(lib) can in principle be estimated by full maximum likelihood over the full 
set of parameters: {on, (Pi, 4,, c,, y,, /3,, (i = 1,. . . , N), p: (i = 1,. . . , N), 
and Ri, (i = 1,. . . , N, j = 1,. . . , N)) assuming a certain joint distribution 
(presumably the conditional multivariate normal distribution) for the unpre- 
dictable part of asset excess returns. This is potentially a very large system 
with a large number of parameters when N is large. For instance, the total 
number of parameters is 80 when N is 10, 255 when N = 20, and 5255 when 
N = 100. Given the large number of parameters (which could easily be larger 
than the total number of time periods available) and given the fact that there 
are a lot of parameters in the constant part of the conditional covariance 
matrix that we are not really interested in, a simpler tow-step estimation 
procedure might be more practical than a full maximum likelihood estima- 
tion procedure. We sacrifice efficiency but maintain consistency of the 
parameters of interest we estimate. 

In the first step of the two-step estimation method, A univariate 
GARCH(l, l)-M model as described by eqs. (lla> and (lib) is fitted to the 
market excess return. In the second step, the estimated conditional mean and 
variance of the market excess return is then taken as the data series in 
univariate maximum likelihood estimation of the conditional mean and 
variance equations of each individual asset excess return series implied by 
eqs. (7) and (B), 

( 12b) 
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where F~, is the risk premium of asset i, p: is the static component of the 
risk premium of asset i, pmi is the conditional market beta of asset i, hi, is 
the conditional excess return variance of asset i, and Rii is the ith diagonal 
element of fi (the constant part of the conditiona covariance matrix of asset 
excess returns). 

This two-step procedure ignores cross-asset correlations and cross-asset 
parameter restrictions which both sacrifice efficiency. Lin (1989) considers 
some approximations to full information maximum likelihood by doing one 
iteration full maximum likelihood after the second step. However, given the 
large number of parameters relative to the number of observations, the one 
additional step might not be feasible for a large system. A second disadvan- 
tage of the two-step method is the fact that the computed t-ratios do not 
have limiting normal distributions. Monte Carlo evidence in Lin (1989) 
suggests that in similar situations they may in fact be conservative. The clear 
advantage of the two-step estimator is the ease with which it can be 
expanded to apply to larger and larger systems. In fact, once the market risk 
premium and the market volatility are estimated, they can be used to 
estimate risk premia for sets of individual assets without needing to reesti- 
mate the entire system. 

4.2. Empirical results 

The data we use to evaluate the dynamic market model is a vector of 
monthly excess returns of ten decile portfolios of stocks traded in the NYSE 
and AMEX. The value-weighted NYSE + AMEX portfolio is taken as the 
market proxy. The monthly stock returns data are obtained from the 1985 
CRSP Index Tape. The monthly returns of a one-month Treasury bill which 
is used as the riskfree asset in the computation of the excess returns are 
obtained from the Fama Term Structure File in the 1985 CRSP Government 
Bond Tape. The sample period is from August 1964 to November 1985. A 
total of 2.56 monthly observations. 

Summary statistics for the excess returns series are given in table 1. In the 
table, Dec. 1 is the portfolio of the smallest firms and Dec. 10 is the portfolio 
of the largest firms. The average monthly excess returns of the ten decile 
portfolios have a close to monotonic pattern, with the small firm portfolios 
having higher average monthly excess returns. The average monthly excess 
return of Dec. 1 (the portfolio of the smallest firms) is about 1.3% higher 
than the average monthly excess return of Dec. 10 (the portfolio of the 
largest firms). The Ljung-Box statistics (QS12) for 12th-order serial correla- 
tion in the squares of the monthly excess return series are significant at the 
5% level for most of the portfolios, especially the small firm portfolios. The 
Ljung-Box statistics for the levels (Q12) are also very significant for the small 
firm portfolios. These are evidence of time-varying excess return volatilities 
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Table 1 

Summary statistics for individual asset excess returns. 

Assets Mean Var. Skew. Kurt. Q12 QS12 

Dec. 1 1.4649 82.075 1.19 8.50 41.67 40.33 
Dec. 2 1.0329 61.669 0.70 7.30 30.26 31.02 
Dec. 3 1.0291 52.834 0.45 6.38 23.98 23.80 
Dec. 4 0.9556 47.498 0.33 6.03 18.73 21.19 
Dec. 5 0.7853 45.017 0.19 5.49 19.19 21.79 
Dec. 6 0.7979 38.853 0.12 5.42 17.41 14.86 
Dec. 7 0.7010 32.618 - 0.07 4.67 17.17 14.96 
Dec. 8 0.5217 29.833 0.05 4.49 17.08 12.02 
Dec. 9 0.4716 25.308 0.12 4.09 15.01 21.59 
Dec. 10 0.1443 17.406 0.17 4.17 10.58 30.94 

and time-varying risk premia. In other words, there is no doubt that there is 
some dynamics in the set of asset excess returns yet to be explained. The 
dynamic market model is a reasonable first candidate. 

Our first-step estimation for the dynamic market model yields the follow- 
ing results for the GARCH(l, l)-M model for the market excess returns 
(asymptotic t-statistics in parentheses): 

7T = - 3.3761 + 0.1982 . tImt, 
m’ (-1.46) (1.58) 

em, = 1.9348 + 0.8461 . B,t_l + 0.0518. u;~_ ,, 
(1.68) (12.59) (1.79) 

Diagnosis: 

TSAl = 3.19 TNA3 = 14.34 Skew. = -0.12 Kurt. = 3.57 

Q12 = 11.64 QS12 = 6.08 

Several diagnostic statistics are also computed and reported above. They 
support the GARCH(l, l)-M specification for the excess return of the value- 
weighted market portfolio. TSAl is the one-degree-of-freedom Lagrange 
Multiplier statistic testing for u:,_~ as an additional variable in the variance 
equation. It is insignificant at the standard 5% level. TNA3 is the three- 
degree-of-freedom likelihood ratio statistic testing the null hypothesis that 
the coefficients corresponding to 0,, in the mean equation and e,,_, and 
u:,-, in the variance equation are zero. Although the distribution of this 
statistic is unknown under the null, a chi-square(3) is presumably an upper 
bound, hence it is highly significant. The coefficient of skewness (Skew.) and 

J.Econ- J 
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Table 2 

A dynamic market model for individual assets.” 

CL,, = 0.6356 + 2.1781 ‘v,,,, h,, = - 16.8629 + 2.1718*.8,, 
(1.17) (11.01) C-1.01) 

yz, = 0.3667 + 1.6348 T,,,, 
(0.76) (9.02) 

/L,, = 0.4114 + 1.4409. rrnf 
(0.92) (7.96) 

/.L~, = 0.3955 + 1.3270. r,,,, 
(0.92) (7.41) 

gsr = 0.2529 + 1.2737 T,,,~ 
(0.60) (6.64) 

pf), = 0.3185 + 1.1155 ‘7rm, 
(0.81) (6.27) 

p,, = 0.2558 + 1.0441 ‘r,,,, 
(0.70) (4.91) 

PXI = 0.0740 + 1.0404. iTm, 
(0.21) (5.46) 

CLW = 0.0486 + 0.9289. rm, 
(0.15) (5.08) 

PlO, = - 0.2031 + 0.9377. rr,, 
(- 0.79) (5.43) 

- 

h,, = 5.8455 + 1.6348’.0,,,, 
(0.49) 

h3, = 9.6825 + 1 .440Q2. Omr 
(0.94) 

hq, = 11.0883 + 1.3270’. B,, 
(1.16) 

h,,=11.8377+ 1.2737’.0,, 
(1.22) 

hh, = 13.3600 + 1.1155*. Omr 
(1.69) 

h,, = 10.9431 + 1.0441* flmr 
(1.29) 

h,, = 8.0731 + 1.0404 2 em, 
(1.06) 

hg, = 7.9551 + 0.9289*. em, 
(1.22) 

h ,oI = 0.1470 + o.93772 em! 
(0.02) 

“Asymptotic t-statistics in parentheses. 

the coefficient of kurtosis (Kurt.) show no severe evidence against the 
conditional normality assumption. The Ljung-Box statistics for twelfth-order 
serial correlation in the levels (Q12) and the squares (QS12) of the normal- 
ized residuais are also insignificant at the 5% level indicating no unexplained 
time variation in the conditional variance of the market excess returns. 

The estimated conditional variance co,,) and the estimated risk premium 

(5T*, = - 3.376 + 0.1982 . em,) for the value-weighted market portfolio are 
used as predetermined variables in the second step of the estimation for the 
individual excess return processes [as given in eqs. (12a) and (12b)l of the ten 
decile portfolios. The estimation results are reported in table 2. 

The results are roughly as one might expect. The estimated betas decrease 
monotonically with firm size. However, the betas for the small firms are 
considerably larger than usually reported, and the intercepts, which measure 
abnormal returns or ‘alpha’, are nowhere significantly different from zero. 
Contrary to the Schwert and Seguin conclusion, this evidence supports the 
ability of the CAPM to explain the small firm excess returns. The betas 
estimated using a static framework are simply too small. 

A test for the nonlinear restriction implied by the dynamic market model, 
that the beta estimated in the mean equation is the square root of the 
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coefficient corresponding to the conditional variance of the market in the 
variance equation, is performed. The test is conducted under the artificial 
model: 

where y,, is the excess return of asset i at time f. 
Under the null hypothesis that the dynamic market model is the true 

data-generating mechanism, d,, should equal to zero. The one-degree-of- 
freedom LM test statistics (TFRl) are reported below for each of the ten 
decile portfolios: 

Testing restrictions on mean and variance equation parameters 

/Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6 Dec. 7 Dec. 8 Dec. 9 Dec. 10 

TFRl/ 2.23 1.23 0.30 0.29 0.21 0.15 0.14 0.33 0.68 0.42 

The statistics are insignificant for all ten decile portfolios at the 5% level. 
The results suggest that the value-weighted market portfolio might in fact be 
a dynamic factor. However, this result does not imply that the dynamic 
behavior of asset excess returns is governed solely by a single dynamic factor. 

To investigate the possibility that the dynamic market model might not be 
able to capture completely the dynamics of asset excess returns, we consider 
a diagnostic test recently proposed by Engle and Ng (1991). We compute the 
normalized squared residuals for the ten decile portfolios and regress them 
on information from previous periods. If the heteroskedasticity is correctly 
modelled, the dependent variables should be independent and identically 
distributed and hence not predictable. The variables used to predict these 
residuals are the preceding six-month average of the squared residuals of 
decile portfolio 1 and of decile portfolio 10. The regression equation can be 
expressed as 

- = 60 + 61 i efl_j + 6, i efo,_, + Cit, 
4 

i=l ) . . . ) 10. (14) 
j= 1 J=l 

If the dynamic market model is correct, then the 6i parameters should be 
zero. Hence, to test for additional dynamic structure in the data not ex- 
plained by the dynamic market model, we can look at the F-statistics from 
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these regressions. It is, however, important to note that the actual size of the 
test is actually smaller than the standard size. It is because the scores for the 
variance equation parameters in the maximum likelihood estimation of 
the dynamic market model are omitted from the regression. In other words, 
the tests are conservative. 

The F-statistics of the above regression with degrees of freedom (2,247) 
are reported below: 

Testing for unexplained dynamic structure 

Dec. 1 Dec.2 Dec.3 Dec.4 Dec.5 Dec.6 Dec.7 Dec.8 Dec.9 Dec.10 

F 4.82 4.93 3.72 4.11 3.76 3.73 2.16 2.77 2.23 2.34 

The F-statistics are significant at the standard 5% level for the first six 
decile portfolios. Since the test is conservative, this is a strong rejection of the 
dynamic market model at least for the smaller firms. 

5. More dynamic factors 

Given that the dynamic market model cannot completely capture the 
dynamics of the asset excess returns, it is interesting and important to 
examine whether these remaining differences in the dynamic components of 
asset excess returns can be explained by a more general dynamic factor 
model with more than one dynamic factor. The difficulty of such an analysis 
is in finding the remaining dynamic factors. Since factors are by definition 
mutually uncorrelated, the set of portfolios with zero conditional market beta 
but with changing conditional variances and changing risk premia are reason- 
able candidates for additional dynamic factors. 

Let w be a 10 X 1 vector with w’fi, = 0 and w'l = 1. If the dynamic market 
model given in (8) is correct, the excess return of a portfolio constructed with 
w as the vector of weights would have a constant conditional variance 
ew = w’ cov,_ JYt, yI >w = w’Rw. Because w’fl, = 0, such portfolios will be 
called zero conditional market beta portfolios. If there are more dynamic 
factors, then such portfolios may have time-varying variances and means. 
From the set of ten decile portfolios, we construct a set of nine zero 
conditional market beta portfolios using restricted principal component anal- 
ysis on the unconditional covariance matrix of asset excess returns. The 
restriction is that each of these portfolios has a zero conditional market beta 
and be mutually uncorrelated. Let H be the unconditional covariance matrix 
of the excess returns of the ten decile portfolios, 1 be a 10 X 1 vector of 
one’s, and wi be the 10 x 1 vector of weights for the jth zero conditional 
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Table 3 

Weights of the zero conditional market beta portfolios. 

Pl P2 P3 P4 P5 P6 P7 P8 P9 

Dec. 1 -0.72 - 20.98 - 6.97 
Dec. 2 -0.30 7.54 7.79 
Dec. 3 -0.07 12.98 6.70 
Dec. 4 -0.05 14.92 2.47 
Dec. 5 0.17 13.04 - 2.32 
Dec. 6 0.27 13.62 - 2.97 
Dec. 7 0.32 7.49 - 2.94 
Dec. 8 0.39 - 1.58 - 4.48 
Dec. 9 0.45 - 7.44 -3.19 
Dec. 10 0.44 - 38.56 6.92 

-2.51 
18.15 

- 14.69 
- 1.89 

- 10.86 
2.25 
5.58 
3.34 
5.35 

-3.73 

1.72 1.88 - 75.73 3.91 2.84 
- 2.34 - 7.72 368.58 - 10.78 -27.14 

0.21 6.16 1080.07 13.48 72.27 
- 1.05 8.41 - 1943.20 1.88 90.17 

0.55 - 7.48 44.10 - 33.05 - 101.37 
6.65 - 44.19 - 118.70 23.51 - 105.92 
6.69 59.51 219.62 8.47 - 83.73 

- 29.82 -3.03 345.23 1.60 59.06 
18.68 - 10.97 439.46 - 9.61 164.52 

- 0.28 - 1.57 - 358.43 1.59 - 69.70 

market beta portfolio (j = 1, . . . , 9). The first weight vector, wr, is set equal to 

g,/(g;l), where g, is the solution to the restricted principal component 
problem: maxg g’Hg subject to g’g = 1 and g’p, = 0. The second weight 
vector, w2, is set equal to g,/(g;l), where g, is the solution to the problem: 
maxg g’Hg subject to g’g = 1, g’Hg, =g’/3, = 0. The third weight vector, 
ws, is set equal to g,/(g;l), where g, is the solution to the problem: 
maxg g’Hg subject to g’g = 1, g’Hg, =g’Hig, =g’/3, = 0. The weights for 
the remaining seven zero conditional market beta portfolios are found 
analogously. This procedure guarantees the production of a set of portfolios 
that are mutually uncorrelated and have zero conditional market betas. The 
portfolio weights of the set of nine zero conditional market beta portfolios 
are reported in table 3. 

To understand the dynamic behavior of the excess returns of these zero 
conditional market beta portfolios, we fit a GARCH(l,l)-M model to the 
excess return of each of these portfolios. The risk premium and the condi- 
tional excess return variance of the jth zero conditional market beta portfolio 
are denoted by nj, and ojt, respectively. The estimation results are reported 
in table 4. 

From table 4 we observe that portfolio P2 has ARCH and GARCH 
parameters that are both significant at the 5% level. Portfolio P3 has a 
GARCH parameter which is significant at the 5% and an ARCH parameter 
which is significant at the 10% level. All other portfolios do not have 
significant ARCH parameters even though some of them have significant 
GARCH parameters. Since the GARCH(l, l)-M model is not well defined 
when the ARCH parameter is zero, these other portfolios might not really 
have time-varying variance. The three-degree-of-freedom likelihood ratio 
statistics (TN31 for constant mean and variance against the GARCH(l, 1)-M 
and the twelve-degree-of-freedom Ljung-Box statistic for the 12th-order 
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Table 4 

GARCH(1, 1)-M model for the zero conditional market beta portfoliosa 

?r I, = -4.465 + 0.107. 01, 
( - 0.07) (0.06) 

?T z1 = -31.51 + 0.002 8,, 
(- 0.99) (1.55) 

?r 3, = 9.9966 - 0.037. Oxr 
(0.84) (- 0.96) 

v‘+, = - 89.92 + 0.168 04r 
(-0.71) (0.73) 

rsr = - 2.375 + 0.013 I+, 
(- 0.30) (0.64) 

?T 6, = 15.624 - 0.006 Ohr 
(0.46) ( - 0.37) 

?r ,! = -39.82 - 0.000. B,, 
(-0.01) (-0.00) 

vs, = 5.9020 - 0.000 es, 
(0.38) (-0.01) 

i7 9, = 26.101 - 0.008 09, 
(0.38) (- 0.0) 

0,,=38.27 + 0.009.19~,~~ + 0.006.u:,_, 
(0.18) (0.00) (0.10) 

&,= -209.6 + 0.966.fI,,_, + 0.041 .u;,_~ 
( - 0.75) (60.4) (3.07) 

Bjr =66.44 + 0.722.0,,_, + 0.069. u;,_, 
(1.65) (4.86) (1.46) 

B,, = 1044.0 - 0.974 04,_, + 0.001 u:,_ * 
(11.7) (-26.6) (0.49) 

Bs, = 200.3 + 0.362 tlsr _ 1 + 0.121 U$ _ , 
(1.03) (0.66) (1.09) 

e6( = 89.77 + 0.974 06,_, - 0.017 u;,_, 
(0.58) (17.3) (-0.71) 

0,, =2(106) + 0.233 t 07r_1 + 0.017. u:,-, 
(0.20) (0.06) (0.21) 

es, =930.1 + O.OOO’Osr~, + 0.101 ‘u;1_1 
(1.28) (0.00) (1.25) 

f&,=22109+ 0.525.&m, + 0.211.u;,~, 
(1.21) (1.60) (1.17) 

‘Asymptotic t-statistics in parentheses. 

Pl 

Table 5 

Diagnostic statistics for the GARCH(1, 1)-M. 

P2 P3 P4 P5 P6 P7 P8 P9 

TN3 0.03 15.04 8.89 2.31 3.27 1.38 0.08 1.34 1.53 
QS12 10.35 5.66 15.33 4.00 11.51 8.60 10.13 0.82 10.76 
Skew. - 0.03 - 0.24 -0.15 0.13 0.20 - 0.20 -0.12 0.23 0.10 
Kurt. 3.82 3.88 3.10 3.40 2.86 3.11 2.95 3.52 2.94 

serial correlation in the squared normalized residuals (QS12) reported in 
table 5 confirm the above observation. 

The likelihood ratio statistics, TN3, are significant at the 5% level for both 
P2 and P3 but not for the other portfolios. Furthermore, the Ljung-Box 
statistics, QS12, are insignificant at the 5% level for all portfolios indicating 
that there is no unexplained serial correlations in the conditional variance of 
the portfolio excess return which is not captured by the GARCH(l,l)-M. 
The other two statistics, Skew. and Kurt. (the coefficient of skewness and the 
coefficient for kurtosis for the normalized residuals), do not indicate devia- 
tion from the conditional normal assumption. 
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As zero conditional market beta portfolios with time-varying conditional 
variances, portfolios P2 and P3 are reasonable candidates for two additional 
dynamic factors. We now test that the risk premium of a factor does not 
depend on the risk premium of any other factors and that the time-varying 
volatility of a factor is not driven by the time-varying volatility of any other 
factor. We will then use P2, P3, and the value-weighted market portfolio as 
three dynamic factors to explain the differences in the dynamic components 
of the asset risk premia. 

The test is conducted as a four-degree-of-freedom likelihood ratio test 
adding the risk premia of two factors as explanatory variables into the mean 
equation of the third factor and the time-varying volatility of two factors as 
explanatory variables into the variance equation of the third factor. The tests 
are actually tests of the implications of the restrictions: w$Jm = w;f13 = 

QL = w& = wL/3z = wk& = 0 (where w,,~ is the market weight and where 
some but not all were imposed in the construction of the portfolios). The 
exact restrictions are hard to test directly as they involve cross-equation 
restrictions and therefore require the joint estimation of the whole system. 
The likelihood ratio statistics are 0.0964 (using market and P3 to explain P2), 
2.2054 (using market and P2 to explain P3), and 1.8684 (using P2 and P3 to 
explain the market). While the limiting distributions of these statistics are 
unknown, they are all insignificant even at the 10% level under the chi- 
square(4) distribution. We have also tried adding past squared residuals of 
two factors as additional explanatory variables into the variance equation of 
the third factor. The two-degree-of-freedom likelihood statistics are 1.54 (P2 
being the third factor), 5.82 (P3 being the third factor), and 1.86 (the market 
being the third factor). They are all insignificant at the 5% level. There is no 
evidence of any ‘causality in variance’ effect between the three factors. 
Apparently, the dynamics of these three factors are driven by different forces. 
The movements between these conditional variances are also not very highly 
correlated. The correlation coefficients are 0.57 between the conditional 
variances of the market and P2, 0.35 between the conditional variances of the 
market and P3, and 0.30 between the conditional variances of P2 and P3. 

6. A three-dynamic-factor model 

The usefulness of a three-dynamic-factor model with factors P2, P3, and 
the market must now be assessed. To investigate this issue, we estimate a 
three-dynamic-factor version of eqs. (3b) and (4) for the vector of asset excess 
returns using the two-step estimation method introduced in section 4. The 
estimated conditional variances 0,,, 8,,, and ejr, and the risk premia TV,, 

r2t, and rr3! of the three factors from the GARCH(l, l)-M model are used 
as predetermined variables to explain the dynamics of the excess returns of 
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the ten decile portfolios. Maximum likelihood estimation (on the marginal 
distributions) using the BHHH algorithm gives the results as listed in table 6. 

From table 6 we observe that all conditional market betas are significant at 
the 5% level. Small firm portfolios have higher conditional market betas than 
large firm portfolios. The difference in betas is actually greater than is usually 
recorded from the unconditional CAPM. To illustrate the last point, we have 
also computed the unconditional market beta of the ten decile portfolios by 
regressing their excess returns on a constant and the market excess return. 
These unconditional market betas, pMMI, are reported below side-by-side with 
the conditional market betas, Pmi, from table 6: 

Conditional and unconditional market betas 

Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6 Dec. 7 Dec. 8 Dec. 9 Dec. 10 

pMi 1.330 1.319 1.321 1.300 1.319 1.268 1.192 1.172 1.102 0.932 
pmi 2.278 1.520 1.342 1.197 1.322 1.199 1.109 1.164 1.061 0.894 

The conditional market betas of the small firm portfolios are substantially 
larger than the corresponding unconditional market betas. Also, the condi- 
tional beta is increasing with firm size at a much higher rate than the 
unconditional market betas. 

From table 6 we also observe that small firm portfolios have higher 
conditional betas with respect to P2 than large firm portfolios and that this 
factor is significant at the 5% level for the small firm portfolios. In terms of 
the third factor, the betas are largest for the small and large firm portfolios, 
but are only significant for the large firms. Finally, the constant terms in the 
risk premium equations which represent the static component of risk premia 
are not increasing in firm size. In fact, none of them are significant even at 
the 10% level. 

The first three observations suggest that small firms are probably more 
risky than a traditional static CAPM would have predicted. Hence, the 
so-called small firm anomaly might not really be an anomaly but just a 
reflection of the fact that the traditional CAPM does not provide a correct 
risk assessment for assets. The difference between the risk premia of Dec. 1 
(the portfolio of the smallest firms) and Dec. 10 (the portfolio of the largest 
firms) which is not captured by the dynamic factors is only 0.13%, which is 
only one tenth of the figure from the unconditional mean excess returns. In 
fact, since the constant in the risk premium equation is insignificant for all 
ten portfolios, there might not be any difference in the risk premia which is 
not explained by the dynamic model. This last point also suggests that the 
static component of asset risk premia might not be very important relative to 
the dynamic component. 
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Table 6 

A three-dynamic-factor model for individual assetsa 

/.L,~ = 0.5225 + 2.2780 i-r,,,, + 0.0325 rzr + 0.2326. 7r3, 
(0.78) (6.87) (2.22) (1.15) 

h,, = -61.5087+2.2780’~0,, +0.0325’.0,, + 0.2326*.& 
(- 1.79) 

y,, = 0.2013 + 1.5196 ‘z-,,,, + 0.0293 ‘r2, + 0.2012.~~, 
(0.35) (5.36) (2.64) (1.35) 

h2, = - 17.1153 + 1.5196*. t’,,,, + 0.0293*. B,, + 0.2012’. Ox, 
( - 0.79) 

/Lo, = 0.1797 + 1.3418 .z-,,,, + 0.0240 ‘1~~~ + 0.1190 ‘rrj, 
(0.31) (4.81) (1.91) (0.80) 

h,, = -0.5949 + 1.3418*.8,, + 0.0240*~0,, + 0.1190.0,, 
C-0.04) 

/.L~, = 0.2514 + 1.1972. T”,, + 0.0264. m-21 + 0.1904. x3, 
(0.49) (4.23) (2.46) (1.73) 

h,, = -8.2312 + 1.1972*.8,, + 0.0264*.0,, + 01904*.~9~, 
(-0.51) 

pL5, = 0.2698 + 1.3222. rm, + 0.0140. r2, + 0.1752. x3, 
(0.47) (4.77) (0.90) (1.58) 

h,, = -3.0181 + 1.3222*. O,, + 0.0140*. B2, + 0.1752* fl,, 
C-0.19) 

/+,, = 0.3883 + 1.1990.~~, + 00106’n,, + 0.1709.~,, 
(0.73) (4.69) (0.65) (1.92) 

- 1.1983 
- 0.09) 

+ 1.19902’ + 0.0106* 0*, + 0.17092 

/.L,,= 0.4082+ 1.1093.~~,+ 0.0071.rr2,+ 0.1743.~,, 
(0.79) (3.91) (0.42) (2.17) 

h,, = - 1.5623 + 1.1093*. B,, + 0.0071*. 02, + 0.1743*. 8,, 
C-0.12) 

ps, = 0.3721 + 1.1644. rm, + 0.0006 r2, + 0.1827. ‘TT~, 
(0.67) (4.86) (0.03) (2.40) 

h,, = - 7.0133 
( - 0.54) 

+ 1.1644*. 8 ??7, + 0.0006* 92, + 0.1827* .esr 

+,, = 0.4288 + 1.0611 rm, - 0.0012 Tr2, + 0.1930 *jr 
(0.85) (4.77) (- 0.06) (2.90) 

hq, = -8.8046 + 1.0611*. 8,, + 0.0012*. B,, + 0.1930*. Ox, 
(- 0.77) 

/.L,“! = 0.3964 + 0.8941 rmr - 0.0069 rr2, + 0.2124. rr3, 
(1.08) (4.53) (- 0.56) (3.51) 

h IO{ = - 14.161 + 0.8941*. O,, + 0.0069’. O,, + 0.2124*. B,, 
(- 1.54) 

“Asymptotic r-statistics in parentheses. 
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To evaluate the quality of our three-factor model and to check for 
misspecification, we have also explicitly tested (1) the restrictions on the 
mean and variance equation parameters imposed by the model, (2) the 
existence of unexplained serial correlation in the conditional variance of the 
individual asset excess returns, and (3) evidence that there remain additional 
dynamic factors. We have also looked for signs of violation of the conditional 
normality assumption. The first test is conducted under an artificial model 
analogous to eqs. (13a) and (13b): 

Yit=PcL:+ (Pmi+dmt)7Tmt+ (P?_i+d2iht 

+ ( P3i + d3i) T3r + eit 9 ( 15a) 

hi, = nii + phi . e,, + p,‘, . e2r + p5i . e3r. ( 15b) 

The null hypothesis is that dmi, d2(, and dXi are all zeros. The test statistic 
used is a three-degree-of-freedom LM test statistics and is labeled TFR3. 
The second test is a five-degree-of-freedom LM test for the addition of the 
first four lags of the own squared residuals into the variance equation of each 
asset and own conditional variance into the mean equation of each asset. 
This is actually a test for additional own ARCH-M effects. The test is an LM 
test of the joint zeros of coefficients au, aZi,. . . , u5i in the following artificial 
model: 

edIF,- I - N(O,h,,), 

h;, = Fiji + pk;. O,, + pt. 82, + Psi. 03r + 5 aji. e;_j. 
j=2 

( 16b) 

The test statistic is labeled TOV5. Third, we re-estimate eq. (14) which tests 
for residual heteroskedasticity in the standardized residuals. Finally, to get a 
feel for the quality of the conditional normality assumption, we have also 
computed the coefficient of skewness (Skew.) and the coefficient of kurtosis 
(Kurt.) for the normalized residuals. All of these statistics are reported in 
table 7. 

TFR3 is insignificant at the 5% level for all ten decile portfolios. This 
indicates that the market, P2 and P3 are reasonable proxy for dynamic 
factors. TOV5 is also insignificant at the 5% level for all ten decile portfolios. 
Hence there is no own variance effect in the vector of asset excess returns. 
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Table 7 

Diagnostics for the three-dynamic-factor model. 

Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6 Dec. 7 Dec. 8 Dec. 9 Dec. 10 

TFR3 4.55 3.70 3.46 2.90 1.63 1.36 1.24 1.91 3.80 1.77 
TOV5 3.67 5.74 5.31 6.32 4.19 5.56 5.08 2.90 5.35 0.81 
F 2.55 3.48 2.5 1 2.99 2.55 2.32 1.38 1.77 1.33 1.90 
Skew. 0.41 0.11 -0.01 - 0.09 -0.16 -0.19 -0.26 -0.18 -0.05 0.09 
Kurt. 4.33 4.52 4.45 4.17 4.18 4.31 4.16 3.74 3.37 3.54 

Finally, the coefficient of skewness and the coefficient of kurtosis for the 
normalized residuals do not show strong disagreement with the conditional 
normality assumption. There is no strong evidence against the three- 
dynamic-factor model. 

7. The factors and macro variables 

Given that P2 and P3 emerge as additional dynamic factors in the pricing 
of assets, it is interesting to study their relationship with some macro-vari- 
ables. While a huge number of macro-variables have been considered in the 
literature by various works that use macro-variables in asset pricing, we have 
decided to focus on four variables that we think are most relevant to our 
application. The first, ZPPNR, is the monthly percentage rate of change of 
the index of industrial production from the 1986 Citibase tape. Secondly, 
RESDZJM is a recession dummy variable that takes a value of 1 when the 
economy is in a down turn (going from a peak to a trough in the business 
cycle) and 0 otherwise. The dates of troughs and peaks of business cycle are 
from the NBER reference dates compiled in the User’s Manual for the 1986 
Citibase tape. The third is JANDUM, a January dummy which takes a value 
of 1 in the month of January and 0 otherwise. Finally, BAAAAA is the 
difference between the annualized yields to maturity of Baa and Aaa bonds. 
The correlation coefficients between these macro-variables and the excess 
returns of the portfolios P2 and P3 are: 

Correlation coeficien ts 

IPPNR RESDUM JANDUM BAAAAA 

PI 0.0145 - 0.0632 0.2417 0.0976 

P3 - 0.0132 - 0.1548 0.0524 - 0.0242 

The January dummy variable, JANDUM, is the one that is most highly 
correlated with P,. The recession dummy variable, RESDUM, is the one that 
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Table 8 

Regression analysis for the factors using macro-variables.” 

Dependent 
variables 

p2 

p, 

Const. 

- 25.851 
(- 1.16) 

- 2.258 
(- 0.78) 

Independent variables 

IPPNR RESDUM JANDUM BAAAAA 

0.003 - 42.929 133.5 38.88 
(0.20) (- 1.54) (2.95) (2.36) 

- 0.0039 - 1.7438 3.452 1.239 
(- 1.90) (- 1.99) (0.81) (0.49) 

“White heteroscedasticity-consistent t-statistics in parentheses. 

is most highly correlated with P,. For further analysis, we also regress the 
excess returns of P, and P, separately on a constant and the four macro- 
variables. The regression results are reported in table 8. 

The results in table 8 show that the excess return of P, is significantly 
related to the January dummy and the bond risk premium variable &l&l&l. 
On the other hand, the excess return of P, is at the margin of being 
significantly related to the rate of change of the index for industrial produc- 
tion and the recession dummy. 

8. Summary and conclusion 

In this paper we define dynamic and static factors and distinguish between 
the dynamic structure and the static structure of asset excess returns. We 
examine the value-weighted market portfolio as a dynamic factor rather than 
a static factor. We ask whether the market is the sole dynamic factor and 
propose an intuitively appealing procedure to search for more dynamic 
factors. We also study a dynamic, multi-factor explanation for the so-called 
‘small firm anomaly’ and the relationship between the dynamic factors and 
some macro-variables. 

We find evidence that the market is a dynamic factor but probably not the 
only one. A three-dynamic-factor model with the market as one of the 
dynamic factor seems to do a better job in describing the dynamic behavior of 
the excess returns of ten decile portfolios. Of these two additional factor, one 
is closely related to a January dummy and a bond risk premium variable. The 
other one is related to the rate of change in industrial production and a 
recession dummy. 

We found that the small firm portfolios are more sensitive to the 
January/Bond risk premium actor, while the large firm portfolios are more 
sensitive to the Production/Recession factor. Furthermore, the conditional 
market betas show a much steeper monotonic relationship than the tradi- 
tional unconditional market betas. We found that after accounting for the 
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systematic risk corresponding to the three dynamic factors, there is not much 
of a static component of asset risk premium and there is no evidence for a 
higher ‘unexplained’ return on small firm portfolios. The results suggest that 
the static component of asset risk premia is relatively less important than the 
dynamic component. Also, the documented small firm anomaly might simply 
be a reflection of the fact that the traditional static CAPM which ignores the 
dynamic behavior of asset excess returns and the possible existence of 
additional factors does not provide a correct risk assessment for assets. 
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