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in this paper, we define dynamic and static factors and distinguish beiween the dynamic and
static structure of asset excess returns. We examine the value-weighted market portfolio as a
dynamic factor and propose an intuitively appealing procedure to search for more dynamic
factors. We find evidence that the market is a dynamic factor but a three-dynamic-factor model
is superior in modelling the decile portfolios. The two additional factors are correlated with a
January dummy and Bond risk premium and with production growth and a recession dummy,
respectively. We found that small firms are more sensitive to the January /Bond risk factor, while
large firms are more sensitive to the Production/Recession factor. We found that after
accounting for the systematic risk corresponding to the three dynamic factors, there is not much
of a static component of asset risk premium and there is no evidence for a higher ‘unexplained’
return on small firm portfolios.

1. Introduction

The goal of asset pricing theory is to explain why different securities offer
different risk premia (expected return minus a riskfree rate). In static models,
the riskfree rate and the expected returns of securities are assumed to be
time-invariant and hence the issue of interest is simply the cross-sectional
differences in security risk premia. With mounting evidence of time-varying
expected returns and time-varying variances and covariances, the level of
complexity of the problem increases and so does the number of interesting
questions. In the more general context, the risk premium of a security can be

thought of as having a dynamic component that varies over time and a static
component that is time-invariant. In this paper we ask whether the differ-

ences in the risk premia are coming mainly form the dynamic component or
from the static component and what influences the dynamic and static
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components These issues have very important implications on asset pricing

PR s voN B alla~atin

auu pul {10110 auocation.

In this paper, we introduce a multi-factor model in which there are
‘dynamic factors’ and ‘static factors’. The dynamic factors are related to the
dynamic component of the vector of asset risk premia, while the static factors
are related to the static component. Based on our model, we then explicitly
investigate: (1) whether the value-weighted market portfolio is a dynamic
factor, (2) whether there are other dynamic factors, (3) how important is the
static component relative to the dynamic component of the vector of asset
risk premia, (4) whether some asset pricing anomalies can be explained by
our more general dynamic factor model, and (5) what are the relationships
between dynamic factors and some macro-variables.

The paper is organized as follows: after we setup the framework for
analysis and define dynamic and static factors in the next section, we will
define a dynamic market model as a special case of our factor structure in
section 3. In scction 4 we will examine the empirical validity of the dynamic
market model using a vector of excess returns from ten-decile portfolios
traded in the NYSE and the AMEX. In section 5, we further explore the
existence of additionai dynamic factors. We introduce an intuitively appeai-
ing procedure to find dynamic factors and examine the dynamic behavior of
some candidate dynamic factors. In section 6, we estimate a three-dynamic-
factor model for the set of asset excess returns based on the candidate
dynamic factors found in section 5. In section 7, we consider the relationship
between our dynamic factors and some macro-variables. Section 8 concludes

the paper.

2. The framework of analysis
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Let y, be a vector of N asset excess returns (rates of return minus a
riskfree rate). A typical multi-factor model is
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where u, is the N x 1 vector of expected excess returns (or risk premia), K is
the total number of factors, B, (k=1,...,K) are linearly independent
(nonstochastic) N X 1 vectors of factor loadings, f,, (k=1,..., K) are uncor-
related random variables called the factors, and &, is the N X 1 vector of
idiosyncratic noises.
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Using an arbitrage argument similar to that in Ross (1976) or a consump-
tion beta argument as in Euglt,, Hg, and Rothschild \199{}/ the vector of asset
risk premia can be related to a set of factor risk premia. Furthermore, as the
factors are uncorrelated, it is natural to assume that the risk premium of each
factor is a function of the conditional volatility of the factor itseif. Hence, the
vector of asset risk premia can be written as

2 B mi(0k,), (2)
k=1

where 6,, is the conditional variance of factor k at time ¢ and m,(*) is a
continuous function.

Eq. {2) suggest a very natural way to classify factors into dynamic factors
and static factors and to decompose the vector of asset risk premia into a
dynamic component and a static component. First, a factor with constant
conditional variance would have a constant factor risk premia and hence
should have no effect on the dynamic behavior of individual asset risk
premium. Such a factor can be called a static factor. On the contrary, a factor
with time-varying conditional variance would generally have a time-varying
factor risk premium and hence should play a role in determining the time
series behavior of individual asset risk premia. Such a factor can be called a
dynamic factor.

Now, if we reorder the factors such that the first K, factors are dynamic
and the remaining K - K, faceors are static, then egs. (1) an d (2) can be
rewritten as

Ky K
y1=”’t+ Zﬂklfkr_*_ Z Bj'fjr+81’ (33)
k=1 J=Ky+1
d S
Bpo=py (3b)

where

K, K
?E Z By m(0,,) and p's= Z /31"77'/(‘9/')-
k=1 Ky+1

j=

In eq. (3b), u! is the dynamic component and u® is the static component of

the vector of asset risk premia.
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The conditional covariance matrix of asset excess returns is

Ky
cov,_ (¥, %) = X BuBibi, + 0, (4)
k=1
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where

K
0= ) BB +A

j=Kg+1

is the constant part of the conditional covariance matrix, and A is the
covariance matrix of the idiosyncratic noise of the asset excess returns.

Under our structure, the dynamic behavior of the conditional covariance
matrix of asset excess returns is driven solely by the dynamic behavior of the
conditional volatility of the factors. If the conditional variance of the portfo-
lios of assets that represent (or mimic) these factors follows individual
GARCH processes, then the conditional covariance structure will reduce to
the FACTOR-ARCH model introduced by Engle (1987) and examined by
Engle, Ng, and Rothschild (1990) for the excess returns of Treasury bills. A
more detailed description of the relationship between dynamic factors and
factor-representing portfolios and the relationship between the covariance
structure in eq. (4) and the FACTOR-ARCH model is given in Engle, Ng,
and Rothschild (1990). We do not repeat the arguments here.

2.2. A corresponding model with time-varying factor betas

The model described above in which some factors have time-varying
volatility but all factor betas are time-invariant can also be rewritten into a
model in which the factors are normalized to have unit variance but the betas
of the assets with respect to the factors are time-varying. If we define

fkﬁ':fkt/\/okt’ k=l!""Kd7
jj‘:fjt/\/ej’ j=Kd+1,...,K,

then the factor model (1) can be rewritten as

Ky K
y=p,t ngt'f/:kt+ Z bj' j>tk+£1’ (5)
k=1 J=Ky+1

where g,,= B0, (k=1,...,K,) are the time-varying factor betas and
b,=By0;, (j=K,+1,...,K) are factor betas that are constant through time.
With the new definition for the betas, the factor risk premia are

‘rrf,=77k(0k,)/\/0k,, k=1,...,K,,
7T;k= j(ﬂj)/\/ﬂj, J=Ks+1,...,K.
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The factor model under this alternative formulation has time-varying factor

betas but with the standard zero mean unit variance factors. The dvnamic
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factors, in this context, are again factors with time-varying risk premia.
Moreover, individual assets have time—varying betas with respect to the
dynamic factors but not the static factors. The conditional covariance matrix
of asset excess returns under this time-varying factor beta formulation is also

given by eq. (4).

3. A dynamic market model

Many researchers have found that the value-weighted stock market portfo-
lio has time-varying return volatility. See, for example, French, Schwert, and
Stambaugh (1987), Chou (1988), or the survey in this volume by Bollerslev,
Chou, and Kroner (1991). Given the role of the traditional market model (or
single-index model) in the asset pricing literature, it is interesting to ask (1)
whether the market nnrtfnlln is in fact a dynamic factor, (2) whether it is the

only dynamic factor, and (3) is it likely that we still have some static factors
after the dynamic nature of the model has been taken into account?

A multi-factor model with one dynamic factor which is the market and
possibly several other static factors can be called a dynamic market model.
Under the dynamic market model, the vector of excess returns can be written

as

K,
y1=#t+Bm'fmr+ ZBJ"]CJ'1+£1’ (6)

j=1

where f,,, is the unanticipated component of the market excess return, 8,, is
the vector of market betas, f, (j= , K,) are the static factors, and B;
(j=1,..., K. ) are vectors of factor 1odumg5 for the static factors.

Let (0,,,,) be the time-varying market risk premium which is a function
of the conditional variance of the market excess return, 6,,,. The vector of

risk premia, u,, is given by

= Bmgm(“gkl) + n, (7\
Lo v

 adid

where p’ is the static component of the vector of asset risk premia which is
related to the risk premia of the static factors and the betas of the assets with
respect to the static factors.

The dynamic market model also has one other very interesting property,
which is that the dynamics of the conditional covariance matrix of asset
returns is driven solely by the conditional volatility of the market excess
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return,

COV(yt, yt) =BmB/m0mt+ﬂs (8)

where €2 is the constant part of the conditional covariance matrix of asset
excess returns. If A is the covariance matrix of the idiosyncratic noise of the
assets, then £ should be

K
0=Y B;B;6, +A. (9)

i=1

Schwert and Seguin (1990) independently proposed an apparently more
general model which they called a single-index model of stock return het-
eroskedasticity. They replace (8) with

Covt‘l(yt’yt) =A,+A4,0,,, (8’)

where A, and A, must be symmetric positive semidefinite square matrices.
Because y,,, =w'y,, for a set of market weights w (which in their case are
equal weights), w'A;w=0 and w'A,w=1. Rewriting A, in its spectral
representation with (nonnegative real) eigenvalues A; and eigenvectors c;,,

N
— 7
Ay = Z Aicici,

i=1

so that w/A,w =0 only if ¢;w =0 for all nonzero A,. If follows immediately
that 4,w = 0. Hence, the vector of market betas,

bm = COVt_‘( Yi» ymt)/vart—l( ymt) = (AOW + GmtAZW)/Hmt! (10)

is simply given by A,w. Schwert and Seguin estimate (8') and (10) for a vector
of returns of five equally-weighted size-ranked portfolios of NYSE common
stocks from 1927 to 1986. They find evidence that the conditional variance of
their size-ranked portfolios are affected by the time-varying conditional
variance of the market. They also report evidence that 4w # 0, which they
fail to interpret as evidence against their model and instead interpret as
evidence for time-varying market betas. Quite surprisingly, they also find that
the small firm anomaly is stronger in the dynamic context than in a static
CAPM framework. We take these latter findings as evidence that the single-
index model! is too restrictive. This is consistent with the findings we report
below and further motivates the search for additional dynamic factors.
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4. Estimating and testing the dynamic market model

4.1. Additional model specifications and estimation method

In order to estimate and test the dynamic market model we need to specify
the dynamics of 8,, and the functional form of =,(6,,). A natural and
convenient model is the GARCH-M model proposed in Engle, Lilien, and
Robins (1987) which was applied to stock market data by French, Schwert,
and Stambaugh (1987) and Chou (1988). Under a GARCH(l, 1)-M model,
8, and m,(0,,) are given by
0mt=wm +‘Pm0mt—1 +¢mur2m‘—l’ (113)
T (0,1 =Cot T VOt > (11b)

where u,, =y,,—m,(0,,) and y,, is simply the market excess return at
time .

The completely specified system as described by egs. (2), (3), (7), (11a), and
(11b) can in principle be estimated by full maximum likelihood over the full
set of parameters: {®,,, s P> Cos Yus Bim G=1,...,N), u (i=1,...,N),
and 02, (i=1,...,N, j=1,...,N)} assuming a certain joint distribution

(r\fnc-|m0]’\]\y the randitinnal mnltivariate narmal dictribiitinn) far the nnnra.
presumacty Ui CONnGiuulhiar Muidvariail NormMmaxr GiSiriouusn, O i unpic

dictable part of asset excess returns. This is potentially a very large system
with a large number of parameters when N is large. For instance, the total
numoer of parameters is 80 when N is 10, 255 when N = 20, and 5255 when

= 100. Given the large number of parameters (which could easily be larger
than the total number of time periods available) and given the fact that there
are a lot of parameters in the constant part of the conditional covariance
matrix that we are not really interested in, a simpler tow-step estimation
procedure might be more practical than a full maximum likelihood estima-
tion procedure. We sacrifice efficiency but maintain consistency of the
parameters of interest we estimate.

In the first step of the two-step estimation method, A univariate
GARCH(1, 1)-M model as described by eqs. (11a) and (11b) is fitted to the
market excess return. In the second step, the estimated conditional mean and

variance of the market evcecs refuirn is then taken ac the data ceriec in
varnianue Ui ual idintlit CALUSS Iviulil 15 ualll tanvil o ad uil Uduia SULICS 1

univariate maximum likelihood estimation of the conditional mean and
variance equations of each individual asset excess return series implied by
egs. (7) and (8),

Mt =,LL§ +:Bmi77m(9mt)’ (123)

hi, + BiOpns (12b)
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where p;, is the risk premium of asset i, u} is the static component of the
risk premium of asset ;. B . is the conditional market heta of asset i. h. is

isk premium of asset i, 8, . is the conditional market beta of asset {, &, is
the conditional excess return variance of asset i, and (2;; is the ith diagonal
element of 2 (the constant part of the conditional covariance matrix of asset
excess returns).

This two-step procedure ignores cross-asset correlations and cross-asset
parameter restrictions which both sacrifice efficiency. Lin (1989) considers
some approximations to full information maximum likelihood by doing one
iteration full maximum likelihood after the second step. However, given the
large number of parameters relative to the number of observations, the one
additional step might not be feasible for a large system. A second disadvan-
tage of the two-step method is the fact that the computed ¢-ratios do not
have limiting normal distributions. Monte Carlo evidence in Lin (1989)
suggests that in similar situations they may in fact be conservative. The clear
advantage of the two-step estimator is the ease with which it can be
expanded to apply to larger and larger systems. In fact, once the market risk

LU RS O ial alll alzged STCIILS, 211 240, QIILC LAIC TRIAal KOT TiSA

premium and the market volatility are estimated, they can be used to
estimate risk premia for sets of individual assets without needing to reesti-
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4.2. Empirical results

The data we use to evaluate the dynamic market model is a vector of
monthly excess returns of ten decile portfolios of stocks traded in the NYSE
and AMEX. The value-weighted NYSE + AMEX portfolio is taken as the
market proxy. The monthly stock returns data are obtained from the 1985
CRSP Index Tape. The monthly returns of a one-month Treasury bill which
is used as the riskfree asset in the computation of the excess returns are
obtained from the Fama Term Structure File in the 1985 CRSP Government
Bond Tape. The sample period is from August 1964 to November 1985, A

e >4lllDIC Houd LI Algtst 170 cialbel A2

total of 256 monthly observations.

Summary statistics for the excess returns series are given in table 1. In the
table, Dec. 1 is the portfolio of the smallest firms and Dec. 10 is the portfolio
of the largest firms. The average monthly excess returns of the ten decile
portfolios have a close to monotonic pattern, with the small firm portfolios
having higher average monthly excess returns. The average monthly excess
return of Dec. 1 (the portfolio of the smallest firms) is about 1.3% higher
than the average monthly excess return of Dec. 10 (the portfolio of the
largest firms). The Ljung-Box statistics (QS12) for 12th-order serial correla-
tion in the squares of the monthly excess return series are significant at the
5% level for most of the portfolios, especially the small firm portfolios. The
Ljung—Box statistics for the levels (Q12) are also very significant for the small
firm portfolios. These are evidence of time-varying excess return volatilities
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Table 1
Summary statistics for individual asset excess returns
Assets Mean Var. Skew. Kurt. Q12 QS12
Dec. 1 1.4649 82.075 1.1 8.50 41.67 40.33
Dec. 2 1.0329 61.669 0.70 7.30 30.26 31.02
Dec. 3 1.0291 52.834 0.45 6.38 23.98 23.80
Dec. 4 0.9556 47.498 0.33 6.03 18.73 21.19
Dec. 5 0.7853 45.017 0.19 5.49 19.19 21.79
Dec. 6 0.7979 38.853 0.12 5.42 17.41 14.86
Dec. 7 0.7010 32.618 -0.07 4.67 17.17 14.96
Dec. 8 0.5217 29.833 0.05 4.49 17.08 12.02
Dec. 9 0.4716 25.308 0.12 4.09 15.01 21.59

Dec. 10 0.1443 17.406 0:17 4.17 10.58 30.94

and time-varying risk premia. In other words, there is no doubt that there is
some dynamics in the set of asset excess returns yet to be explained. The
dynamic market model is a reasonable first candidate.

Our first-step estimation for the dynamic market model yields the follow-
ing results for the GARCH(1,1)-M model for the market excess returns
(asymptotic t-statistics in parentheses):

Ty = —3.3761 + 0.1982-6,,,
(-146) (1.58)

6,,= 1.9348 + 0.8461-6,, ,+ 0.0518-u2, |,
(1.68)  (12.59) (1.79)

Diagnosis:

TSAI =319 |TNA3=14.34 |Skew.= —0.12 [Kurt. =357
QI2=1164 [QSI12=608 | [

Several diagnostic statistics are also computed and reported above. They
support the GARCH(1, 1)-M specification for the excess return of the value-
weighted market portfolio. TSA1 is the one-degree-of-freedom Lagrange
Multiplier statistic testing for u2,_, as an additional variable in the variance
equation. It is insignificant at the standard 5% level. TNA3 is the three-
degree-of-freedom likelihood ratio statistic testing the null hypothesis that
the coeflicients corresponding to 6,,, in the mean equation and 6,,,_, and
“,szi in the variance equation are zero. Although the distribution of this
statistic is unknown under the null, a chi-square(3) is presumably an upper
bound, hence it is highly significant. The coefficient of skewness (Skew.) and

J.Econ—J
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Table 2
A dynamic market model for individual assets.?
= 06356+ 2.1781 -1, hy, = —16.8629 + 2.17182 -4,
117 QaLon (-1.01
15, = 0.3667 + 1.6348 - =, hy, = 5.8455 + 1.63487%- 4
=2t mi 2t G S (14
0.76)  (9.02) (0.49)
pa, = 04114 + 1.4409 -7, hy, = 9.6825 + 1.44092-49,,,
©.92) (7.96) 0.94)
4= 03955+ 13270 -7, h,, =11.0883 + 1.3270%-9, ,
092 (74D (1.16)
ps, = 02529 + 12737 -7, hs, =11.8377 + 1.2737%-4,,,
0.60)  (6.64) (1.22)
o = 03185 + 111557, he, =13.3600 + 1.1155%- 9, ,
081y (627 (1.69)
5= 02558 + 1.0441 -, ho,=10.9431 + 1.0441%-9,,,
0700 (49D 1.29)
g = 0.0740 + 1.0404 - m,,, hg, = 8.0731 + 1.04042-9,_,
vz (5.46) {1.06)
o= 0.0486 + 0.9289 -, , hg, = 7.9551 + 0.92892-9, ,
0.1 (5.08) (1.22)
i, = ~0.2031+ 0.9377 -7, o, = 0.1470 +0.9377% - 9,
(=079 (543) (0.02)

®Asymptotic -statistics in parentheses.

the coefficient of kurtosis (Kurt.) show no severe evidence against the
conditional normality assumption. The Ljung—-Box statistics for twelfth-order
serial correlation in the levels (Q12) and the squares (QS12) of the normal-
ized residuais are also insignificant at the 5% level indicating no unexplained
time variation in the conditional variance of the market excess returns.

The estimated conditional variance (4,,,) and the estimated risk premium
(m,,= —3376+0.1982-6,,) for the value- weighted market portfolio are
used as predetermined variables in the second step of the estimation for the

ndividiial aveags retiirn nrocecceg [ag givan ane (172) and (17K Af tha tan
inGiviGuair CXCCss return processes jas given il ©4S. vi12a) and 1120/ Of i€ i

decile portfolios. The estimation results are reported in table 2

The results are roughly as one might expect. The estimated betas decrease
monotonically with firm size. However, the betas for the smalil firms are
considerably larger than usually reported, and the intercepts, which measure
abnormal returns or ‘alpha’, are nowhere significantly different from zero.
Contrary to the Schwert and Seguin conclusion, this evidence supports the
ability of the CAPM to explain the small firm excess returns. The betas
estimated using a static framework are simply too small.

A test for the nonlinear restriction implied by the dynamic market model,
that the beta estimated in the mean equation is the square root of the
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coefficient corresponding to the conditional variance of the market in the
variance equation, is performed. The test is conducted under the artificial
model:

Yie =M+ (Bt ) e T €4, ey lF,_y ~N(0,h;), (15a)

hig =0+ ﬁrzni "0 (13b)

where y,, is the excess return of asset i at time .

Under the null hypothesis that the dynamic market model is the true
data-generating mechanism, d,,, should equal to zero. The one-degree-of-
freedom LM test statistics (TFR1) are reported below for each of the ten
decile portfolios:

Testing restrictions on mean and variance equation parameiers

IDec 1 Dec.2 Dec.3 Dec.4 Dec.5 Dec.6 Dec.7 Dec.8 Dec.9 Dec. 10

TFR1’223 123 030 029 021 015 014 033 068 042

The statistics are insignificant for all ten decile portfolios at the 5% level.
The results suggest that the value-weighted market portfolio might in fact be
a dynamic factor. However, this result does not imply that the dynamic
behavior of asset excess returns is governed solely by a single dynamic factor.

To investigate the possibility that the dynamic market model might not be
able to capture completely the dynamics of asset excess returns, we consider
a diagnostic test recently proposed by Engle and Ng (1991). We compute the
normalized squared residuals for the ten decile portfolios and regress them

nfarmatinn fraom nrevinng moarindeg If tha hataragkadagticity corranthy
Ull llllUlllluLlUll 1IVsid }Jl\,«VlUUD PU]IUUD 1l UG ll\/L\flUOl\UUaDllblly 10 \aUll\f\—ll_y

modelled, the dependent variables should be independent and identically
distributed and hence not predictable. The variables used to predict these
residuals are the preceding six-month average of the squared residuals of
decile portfolio 1 and of decile portfolio 10. The regression equation can be
expressed as

e 6 6
L =5,+8, Y el 48, Y ek, +u,, i=1,...,10. (14)
7 J )

it j=1 j=1

If the dynamic market model is correct, then the 8, parameters should be
zero. Hence, to test for additional dynamic structure in the data not ex-
plained by the dynamic market model, we can look at the F-statistics from
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these regressions. It is, however, important to note that the actual size of the

tact 1 artiially emallar thaon tha ctandard gize Tt ig hanaticn tha anneoa fre tha
LvatL 1o a\,l.uau_y ollialivi uidadll Liiv dlalivalug dloe, i lD vLLvaunse I.ll(f DLULILD LUl lllC

variance equation parameters in the maximum likelihood estimation of
the dynamic market model are omitted from the regression. In other words,
the tests are conservative.

The F-statistics of the above regression with degrees of freedom (2,247)
are reported below:

Testing for unexplained dynamic structure

JDec.l Dec.2 Dec.3 Dec.4 Dec.5 Dec.6 Dec.7 Dec.8 Dec.9 Dec. 10

277 77 27U
Loid Lol L35

F'lAQ’) 4 0% 172 411 276 73 21
4.54 a.53 S./4 S.11 3./0 3.7/5 L.

o

-
=)

The F-statistics are sig 1ﬁ_ cant at the standard 5% level for the first six

decile portfolios. Since th test is conservative, this is a strong rejection of the
dynamic market model at least for the smaller firms.

5. More dynamic factors

Given that the dynamic market model cannot completely capture the
dynamics of the asset excess returns, it is interesting and important to
examine whether these remaining differences in the dynamic components of
asset excess returns can be explained by a more general dynamic factor
model with more than one dynamic factor. The difficulty of such an analysis
is in finding the remaining dynamic factors. Since factors are by definition
mutually uncorrelated, the set of portfolios with zero conditional market beta
but with changing conditional variances and changing risk premia are reason-

ahlae candidatec for additional dvnamie factars
avie candigates Ior adgditional aynamic actors.

Let w be a 10 X 1 vector with w'B,, = 0 and w'l = 1. If the dynamic market
model given in (8) is correct, the excess return of a portfolio constructed with
w as the vector of weights would have a constant conditional variance
6, =w cov,_(y,, y)w=ww. Because wg, =0, such portfolios will be
called zero conditional market beta portfolios. If there are more dynamic
factors, then such portfolios may have time-varying variances and means.
From the set of ten decile portfolios, we construct a set of nine zero
conditional market beta portfolios using restricted principal component anal-
ysis on the unconditional covariance matrix of asset excess returns. The
restriction is that each of these portfolios has a zero conditional market beta
and be mutually uncorrelated. Let H be the unconditional covariance matrix
of the excess returns of the ten decile portfolios, 1 be a 10 X 1 vector of
one’s, and w; be the 10 X 1 vector of weights for the jth zero conditional
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Table 3
Weights of the zero conditional market beta portfolios.

P1 P2 P3 P4 PS5 P6 P7 P8 P9

Dec. 1 —-0.72 —-2098 -697 —251 1.72 1.88 -75.73 3.91 2.84
Dec. 2 -0.30 7.54 7.79 18.15 —-2.34 ~7.72 368.58 —10.78 —27.14
Dec. 3 -~-0.07 12.98 6.70 —14.69 0.21 6.16 1080.07 13.48 72.27
Dec. 4 -0.05 14.92 2.47 —1.89 -1.05 8.41 —1943.20 1.88 90.17
Dec. 5 0.17 13.04 —-232 -10.86 0.55 —7.48 4410 —-33.05 -101.37
Dec. 6 0.27 13.62 —297 2.25 665 —44.19 —118.70 2351 —-105.92
Dec. 7 0.32 749 -294 5.58 6.69 59.51 219.62 847 —83.73
Dec. 8 0.3 -—1.58 —4.48 334 -2982 -3.03 345.23 1.60 54.06
Dec. 9 045 —-744 -3.19 5.35 18.68 —10.97 439.46 —9.61 164.52
Dec. 10

0.44 —3856 692 -373 -028 —~157 —35843 159  —69.70

market beta portfolio (j = 1,...,9). The first weight vector, w,, is set equal to
g./(gi1), where g, is the solution to the restricted principal component
problem: max, g'Hg subject to g'g=1 and g'B,, =0. The second weight
vector, w,, is set equal to g,/(g51), where g, is the solution to the problem:
max, g'Hg subject to g'e=1, gHg, =g'B,, = 0. The third weight vector,
Wi, is set Cqual €8] 53/(331) where g3 is the so l‘uthI‘x tc the perluu
max, g'Hg subject to g'g=1, g'Hg, =g'Hig, =g'B,, = 0. The weights for
the remaining seven zero conditional market beta portfolios are found
analogously. This procedure guarantees the production of a set of portfolios
that are mutually uncorrelated and have zero conditional market betas. The
portfolio weights of the set of nine zero conditional market beta portfolios
are reported in table 3.

To understand the dynamic behavior of the excess returns of these zero
conditional market beta portfolios, we fit a GARCH(1,1)-M model to the
excess return of each of these portfolios. The risk premium and the condi-
tional excess return variance of the jth zero conditional market beta portfolio
are denoted by m;, and §,, respectively. The estimation results are reported
in table 4.

From table 4 we observe that portfolio P2 has ARCH and GARCH
parameters that are both significant at the 5% level. Portfolio P3 has a
GARCH parameter which is significant at the 5% and an ARCH parameter
which is significant at the 10% level. All other portfolios do not have
significant ARCH parameters even though some of them have significant
GARCH parameters. Since the GARCH(1, 1)-M model is not well defined
when the ARCH parameter is zero, these other portfolios might not really
have time-varying variance. The three-degree-of-freedom likelihood ratio
statistics (TN3) for constant mean and variance against the GARCH(1, 1)-M
and the twelve-degree-of-freedom Ljung—Box statistic for the 12th-order

jt?
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Table 4
GARCH(1, 1)-M model for the zero conditional market beta portfolios.?

mi, = —4.465+ 0.107-6,, 8,,=3827 + 0009-6,,_,+ 0.006-u? _,
(=007 (0.06) 0.18) (0.00) 0.10)

7y = —3151 + 0.002-6,, 0,,=-209.6 + 0.966-6, _,+ 0041 -u, _,
(-099) (1.55) (—0.75) (60.4) (3.07

w3 = 9.9966 — 0.037-6,, 85, =66.44 + 0.722-65,_, + 0.069-u3,_,
(0.84) (-0.96) (1.65) (4.80) (1.46)

= —89.92 + 0.168 6,, 0,,=1044.0 —  0974-8,,_,+ 0.001-u3,_;
(=071 (0.73) 117 (-26.6) (0.49)

ms, = —2.375+ 0.013-4;, 05,=2003 + 0.362-05,_,+ 0121 -uZ,_,
(-030) (0.64) (1.03) (0.66) (1.09)

e, =15.624 —  0.006 - 6, B, =89.77 + 0974-85,_,— 0.017-u?,_,
(0.46) (~037) (0.58) (17.3) (-0.71)

mq,=—39.82 — 0.000-6-, 8, =2(10%) + 0.233-6,,_; + 0.017-u3,_,
(-0.01) (-0.00) 0200  (0.06) 0.21)

g = 59020 —  0.000- 6, 0y, =930.1 + 0.000-84,_,;+ 0.101 -uj, _,
038 (-0.0D1 (1.28) (0.00) (1.25)

mo, =26.101—  0.000 - 0, 89, =22109 + 0.525-04,_, + 0.211-u3, ,
0.38) (~0.0) az2n (.60 117

“Asymptotic ¢-statistics in parentheses.

Table 5
Diagnostic statistics for the GARCH(1, 1)-M.

P1 P2 P3 P4 P5 Po6 P7 P8
TN3 0.03 15.04 8.89 2.31 “3.27 1.38 0.08 1.34
Qs12 10.35 5.66 15.33 4.00 11.51 8.60 10.13 0.82
Skew. -0.03 —-0.24 -0.15 0.13 0.20 -0.20 -0.12 0.23
Kurt. 382 3.88 3.10 3.40 2.86 311 2.95 3.52

P9

153
10.76

2.94

serial correlation in the squared normalized residuals (QS12) reported in

table 5 confirm the above observation.

The likelihood ratio statistics, TN3, are significant at the 5% level for both
P2 and P3 but not for the other portfolios. Furthermore, the Ljung-Box
statistics, QS12, are insignificant at the 5% level for all portfolios indicating
that there is no unexplained serial correlations in the conditional variance of
the portfolio excess return which is not captured by the GARCH(1, 1)-M.
The other two statistics, Skew. and Kurt. (the coefficient of skewness and the
coefficient for kurtosis for the normalized residuals), do not indicate devia-

tion from the conditional normal assumption.
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C-Jacior modgel jor SIOCK Yelirn,

As zero conditional market beta portfolios with time-varying conditional
vananu::s pUI'll()llUb rL dI]U rJ arc IC&SOTI&UIC Caﬁuiuates 101 tWO duulliOﬁal
dynamic factors. We now test that the risk premium of a factor does not
depend on the risk premium of any other factors and that the time-varying
volatility of a factor is not driven by the time-varying volatility of any other
factor. We will then use P2, P3, and the value-weighted market portfolio as
three dynamic factors to explain the differences in the dynamic components
of the asset risk premia.

The test is conducted as a four-degree-of-freedom likelihood ratio test
adding the risk premia of two factors as explanatory variables into the mean
equation of the third factor and the time-varying volatility of two factors as
explanatory variables into the variance equation of the third factor. The tests

are actually tests of the lmr\lmahnnq of the restrictions: w. R =w. R. =
actually tests ot the mmplications or the restrictions: w.B, =w, B,

wiB,, = wiB, =w, B, =w, B; =0 (where w,, is the market weight and where
some but not all were imposed in the construction of the portfolios). The
exact restrictions are hard to test directly as they involve cross-equation
restrictions and therefore require the joint estimation of the whole system.
The likelihood ratio statistics are 0.0964 (using market and P3 to explain P2),
2.2054 (using market and P2 to explain P3), and 1.8684 (using P2 and P3 to
explain the market). While the limiting distributions of these statistics are
unknown, they are all insignificant even at the 10% level under the chi-
square(4) distribution. We have also tried adding past squared residuals of
two factors as additional explanatory variables into the variance equation of
the third factor. The two-degree-of-freedom likelihood statistics are 1.54 (P2
being the third factor), 5.82 (P3 being the third factor), and 1.86 (the market
being the third factor). They are all insigniﬁcant at the 5% level. There is no

evidence of any ‘causality in variance’ effect between the three factors.

Apparently, the dynamics of these three factors are driven by different forces.
The movements between these conditional variances are also not very highly
correlated. The correlation coefficients are 0.57 between the conditional
variances of the market and P2, 0.35 between the conditional variances of the

market and P3, and (.30 between the conditional variances of P2 and P3.

The usefulness of a three-dynamic-factor model with factors P2, P3, and
the market must now be assessed. To investigate this issue, we estimate a
three-dynamic-factor version of egs. (3b) and (4) for the vector of asset excess
returns using the two-step estimation method introduced in section 4. The
estimated conditional variances 8, . 8,,, and 8, and the risk premia =,

,,, and 75, of the three factors from the GARCH(1, 1)-M model are used
as predetermined variables to explain the dynamics of the excess returns of
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the ten decile portfolios. Maximum likelihood estimation (on the marginal

o . . . e e olde £
distributions) using the BHHH algorithm gives the results as listed in table 6.

From table 6 we observe that all conditional market betas are significant at
the 5% level. Small firm portfolios have higher conditional market betas than
large firm portfolios. The difference in betas is actually greater than is usually
recorded from the unconditional CAPM. To illustrate the last point, we have
also computed the unconditional market beta of the ten decile portfolios by
regressing their excess returns on a constant and the market excess return.
These unconditional market betas, B,,;, are reported below side-by-side with
the conditional market betas, 8 ., from table 6:

mi’

Conditional and unconditional market betas

’Dec.l Dec.2 Dec.3 Dec.4 Dec.5 Dec.6 Dec.7 Dec.8 Dec.9 Dec. 10
,BMil 1330 1319 1321 1300 1319 1268 1.192 1172 1102 0.932
B..i| 2278 1520 1342 1.197 1.322 1.199 1.109 1.164 1.061 0.894

The conditional market betas of the small firm portfolios are substantialiy
larger than the corresponding unconditional market betas. Also, the condi-
tional beta is increasing with firm size at a much higher rate than the
unconditional market betas.

From table 6 we also observe that small firm portfolios have higher
conditional betas with respect to P2 than large firm portfolios and that this
factor is significant at the 5% level for the small firm portfolios. In terms of
the third factor, the betas are largest for the small and large firm portfolios,
but are only significant for the large firms. Finally, the constant terms in the
risk premium equations which represent the static component of risk premia

are not increasing in firm size. In fact, none of them are significant even at
the 109, level

The first three observations suggest that small firms are probably more
risky than a traditional static CAPM would have predicted. Hence, the
so-called small firm anomaly might not really be an anomaly but just a
reflection of the fact that the traditional CAPM does not provide a correct
risk assessment for assets. The difference between the risk premia of Dec. 1
(the portfolio of the smallest firms) and Dec. 10 (the portfolio of the largest
firms) which is not captured by the dynamic factors is only 0.13%, which is
only one tenth of the figure from the unconditional mean excess returns. In
fact, since the constant in the risk premium equation is insignificant for all
ten portfolios, there might not be any difference in the risk premia which is
not explained by the dynamic model. This last point also suggests that the
static component of asset risk premia might not be very important relative to
the dynamic component.



(0 78) (6 87) (2.22 (
hy, = —~61.5087 +2.2780° - 6,,, + 0.0325% - 6,, + 0.2326° - ¢,
(—1.79)
2= 02013 + 1.5196 - m,,, + 0.0293 -7, + 0.2012- 7,
035 (536 {(2.64) {1.35)
hy = (— 17.11;3 +1.5196%-8,,, + 0.0293%-6,, + 0.20122- 95,
-0.79
5= 01797 + 1.3418 -7, + 0.0240 - m,, + 0.1190 - 75,
(031) (48D (1.91) (0.80)
hs, = —0.5949 + 1.3418% -6, +0.0240° - 6;, + 0.1190 - 65,
(—0.04)
= 02514 + 1.1972 -7, + 0.0264 -7,, + 0.1904 - 775,
049 (4.23) (2.46) (1.73)
ha, =(— 8%3;2 +1.1972%-6,,, + 0.0264% - 9,, + 019042 - 8,,
-0.51
= 0.2698 + 1.3222-7,,, + 0.0140 - 7,, + 0.1752 -5,
047 @77 (0.90) (1.58)
hs, =( —8.%331 +1.3222%-4,,,+ 0.01402- 9,, + 0.17522 - 85,
= 0.3883 + 1.1990 - m,,, + 00106 - m,, + 0.1709 -5,
0.73)  (4.69) (0.65) (1.92)
hg = —1.1983 + 1.19902- 6,,,, + 0.01062 - 6,, + 0.17092 - 8,
(—0.09)
= 0.4082 + 1.1093 7, + 0.0071 -7y, + 0.1743 - 75,
©.79  G9ID (0.42) 217
ho= —1.5623 +1.1093%-6,,, + 0.0071%- 6,, + 0.1743% - 8,,
(-0.12)
: NI771 L 1 1844« = 4 DDA .~ 1L N1977 . —
wg, = 03721 + 1.1644 -7, + 0.0006 - 75, + 0.1827 - 77,
(0 67)  (4.86) (0.03) (2.40)
hg, = —7.0133 + 1.1644%-9,,, + 0.00062 - 8,, + 0.18272 - 6;,
(—0.54)
= 0.4288 + 1.0611 7, — 00012 7, + 0.1930- 7,
(0.85) 47D (—0.06) (2.90)
hy, = —8.8046 + 1.06112- ¢, + 0.00122-0,, + 0.19302- 8
(_0'77) . me Y2: . 3t
Kig = 03964 + 0.8941 -7, — 0.0069 -m,, + 0.2124 -5,
(1.08)  (4.53) (—0.56) (35D
Rige = (— 14.;2} +0.89412-8,,, + 0.0069° - 8,, + 0.21242 - 9,,
-1

“Asymptotic t-statistics in parentheses.
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To evaluate the quality of our three-factor model and to check for
misspecification, we have also explicitly tested (1) the restrictions on the
mean and variance equation parameters imposed by the model, (2) the
existence of unexplained serial correlation in the conditional variance of the
individual asset excess returns, and (3) evidence that there remain additional
dynamic factors. We have also looked for signs of violation of the conditional
normality assumption. The first test is conducted under an artificial model

analogous to egs. (13a) and (13b):
Yie = B+ (Bt dp) Moy + (Bai +dy )7y,
+(By; +dy) Ty, + ey, (15a)
eylF, 1 ~N(0,h;),

h.=0 . +p8%2-0 +82.9, +82.9.
Trit Yo' Mmoo Yme ' F2¢ Y2t ' M3 V3re

{15H)
{120)

The null hypothesis is that 4,,,, dZt’ and d5; are all zeros. The test statistic
rignd o o thean dacenan AF Fenadaoas not gtatictinc sl Toalalad T2
udCU Id a llllCC UcCpIee OL-ITECaom l_/LVI lCDL STAtiStiCs dnd iS 1aoCica 1 1r'nmo.
The second test is a five-degree-of-freedom 1M test for the addition of the
first four lags of the own squared residuals into the variance equation of each
asset and own conditional variance into the mean equation of each asset.

This is actually a test for additional own ARCH-M effects. The test is an LM

test of the joint zeros of coefficients a,;,a,,,..., a5 in the following artificial
model:
Vie =B+ Boni* Wy + By o+ By sy, +ay, by ey, (16a)
eitlFt—l ~ N(O’hir)’
5
2
Biy =00+ B 0 + B3 05+ B3 05, + Z aj;"ej;_j- (16b)

The test statistic is labeled TOVS. Third, we re-estimate eq. (14) which tests
for residual heteroskedasticity in the standardized residuals. Finally, to get a
feel for the quality of the conditional normality assumption, we have also
computed the coefficient of skewness (Skew.) and the coeflicient of kurtosis
(Kurt.) for the normalized residuals. All of these statistics are reported in
table 7.

TFR3 is insignificant at the 5% level for all ten decile portfolios. This
indicates that the market, P2 and P3 are reasonable proxy for dynamic

factors. TOVS is also insignificant at the 5% level for all ten decile portfolios.
Hence there is no own variance effect in the vector of asset excess returns.
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Table 7

Diagnostics for the three-dvnamic-factor model

221agnestics 1or 1N aree-aynamic-1acior moae:,

Dec.1 Dec.2 Dec.3 Dec.4 Dec.5 Dec.6 Dec.7 Dec.8 Dec.9 Dec. 10

TFR3 455 3.70 346 2.90 1.63 1.36 1.24 1.91 380 177
TOVS  3.67 5.74 5.31 6.32 4.19 5.56 5.08 2.90 535 081
F 2.55 3.48 2.51 2.99 2.55 2.32 1.38 1.77 1.33 1.90
Skew.  0.41 0.11 -001 -009 -016 -019 -026 -0.18 -005 0.09
Kurt. 4.33 4.52 4.45 4.17 4.18 4.31 4.16 3.74 337 354

Finally, the coefficient of skewness and the coefficient of kurtosis for the
normalized residuals do not show strong disagreement with the conditional
normality assumption. There is no strong evidence against the three-
dynamic-factor model.

7. The factors and macro variables

Given that P2 and P3 emerge as additional dynamic factors in the pricing
of assets, it is interesting to study their relationship with some macro-vari-
ables. While a huge number of macro-variables have been considered in the
literature by various works that use macro-variables in asset pricing, we have
decided to focus on four variables that we think are most relevant to our
application. The first, IPPNR, is the monthly percentage rate of change of
the index of industrial production from the 1986 Citibase tape. Secondly,
RESDUM is a recession dummy variable that takes a value of 1 when the
economy is in a down turn (going from a peak to a trough in the business
cycle) and 0 otherwise. The dates of troughs and peaks of business cycle are
from the NBER reference dates compiled in the User’s Manual for the 1986

Citibase tape. The third is JANDUM, a January dummy which takes a value
of 1 in the month of January and 0 otherwise. Finally, BA4A4AA4 is the

JUNN J (el § 01070150 BV LGy Qiike ORLCIWIRSLO., iy F 70 VeV (88 1es

difference between the annualized yields to maturity of Baa and Aaa bonds.
The correlation coefficients between these macro-variables and the excess

returns of the portfolios P2 and P3 are
TCLULIDS UL UIC portl 1108 r< ana ro arc:

Correlation coefficients

‘ IPPNR  RESDUM  JANDUM  BAAAAA

| 00145  —00632 02417 0.0976
— 00132  —0.1548 00524  —0.0242

P,
Py

The January dummy variable, JANDUM, is the one that is most highly
correlated with P,. The recession dummy variable, RESDUM, is the one that
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Table 8
Regression analysis for the factors using macro-variables.?

Independent variablies

Dependent

variables Const. IPPNR RESDUM JANDUM BAAAAA

P, —25.851 0.003 —42.929 133.5 38.88
(-1.16) (0.20) (~154) (2.95) (2.36)

P, —2.258 -0.0039 ~7.7438 3452 1.239

(-0.78) (~1.90) (~1.99) (0.81) (0.49)

#White heteroscedasticity-consistent ¢-statistics in parentheses.

is most highly correlated with P;. For further analysis, we also regress the
excess returns of P, and P, separately on a constant and the four macro-
variables. The regression results are reported in table 8.

The results in table 8 show that the excess return of P, is significantly
related to the January dummy and the bond risk premium variable BA4A4AA.
On the other hand, the excess return of P, is at the margin of being
significantly related to the rate of change of the index for industrial produc-
tion and the recession dummy.

8. Summary and conclusion

In this paper we define dynamic and static factors and distinguish between
the dynamic structure and the static structure of asset excess returns. We
examine the value-weighted market portfolio as a dynamic factor rather than
a static factor. We ask whether the market is the sole dynamic factor and
propose an intuitively appealing procedure to search for more dynamic
factors. We also study a dynamic, multi-factor explanation for the so-called
‘small firm anomaly’ and the relationship between the dynamic factors and
some macro-variables.

We find evidence that the market is a dynamic factor but probably not the
only one. A three-dynamic-factor model with the market as one of the
dynamic factor seems to do a better job in describing the dynamic behavior of
the excess returns of ten decile portfolios. Of these two additional factor, one
is closely related to a January dummy and a bond risk premium variable. The
other one is related to the rate of change in industrial production and-a
recession dummy.

We found that the small firm portfolios are more sensitive to the
January/Bond risk premium actor, while the large firm portfolios are more
sensitive to the Production /Recession factor. Furthermore, the conditional
market betas show a much steeper monotonic relationship than the tradi-
tional unconditional market betas. We found that after accounting for the
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systematic risk corresponding to the three dynamic factors, there is not much

of a static commnonent of asset risk nremium and there is no evidence for a

Sravih LSULLIPRLLCIIT UL QS30L 1S pPualilineiil Qe JALIc 28 A% JL81u2 § Loy L0

higher ‘unexplained’ return on small firm portfolios. The results suggest that
the static component of asset risk premia is relatively less important than the

P PPN, P Y P PP S R Bazmn amazman ey caiolid olemasaler

aylialinic COIpulIciL. ﬂlDU LllC UULCULIICIILCU bllldll 11111 dllUllldly IHIELIL dSIUIpPly
be a reflection of the fact that the traditional static CAPM which ignores the
dynamic behavior of asset excess returns and the possible existence of
additional factors does not provide a correct risk assessment for assets.
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