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In this paper we suggest using the FACTOR-ARCH model as a parsimonious structure for the 
conditional covariance matrix of asset excess returns. This structure allows us to study the 
dynamic relationship between asset risk premia and volatilities in a multivariate system. One and 
two FACTOR-ARCH models are succussfully applied to pricing of Treasury bills. The results 
show stability over time, pass a variety of diagnostic tests, and compare favorably with previous 
empirical findings. 

1. Introduction 

This paper is a contribution to the burgeoning literature which uses time 
series techniques to explain asset prices. Since almost all asset pricing 
theories rest on a specification of the way in which first moments (expected 
returns and risk premia) depend on second moments (variances and covari- 
antes), we focus on methods which allow us to explain the way in which 
second moments change. Our approach is explicitly multivariate; we charac- 
terize changes in the entire second moment matrix. We use the ARCH 
methodology originally proposed in Engle (1982); recent works which have 
used this approach to asset pricing include Bollerslev (1986, 1987), Bollerslev, 
Engle, and Wooldridge (1988), Chou (19881, Diebold and Nerlove (19881, 
Domowitz and Hakkio (19851, Engle and Bollerslev (19861, Engle, Lilien, and 
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Robins (1987), French, Schwert, and Stambaugh (19861, McCurdy and 
Morgan (19881, and Milhoj (1987). 

These studies typically use univariate time series models to represent asset 
returns. This seems inappropriate, as the major theme of static asset pricing 
theories is that an asset’s risk premium depends as much on its covariance 
with other assets as on its own variance. Those studies which do specify a 
multivariate model consider at most two or three asset return series. This is 
also a drawback as empirical work on asset pricing has considered large 
numbers of assets. One leading theory, Ross’s Arbitrage Pricing Theory, 
draws its theoretical sharpness from the assumption that the number of 
assets approaches infinity. See Chamberlain and Rothschild (1983). 

A successful multivariate implementation of ARCH techniques is an 
exercise in parsimonious parameterization. An ARCH analysis of a univari- 
ate time series entails fitting something very like an ARIMA model to the 
(squared) disturbances of a time series model. The brute force generalization 
to a model with N assets would fit such a model to each of the N * (N + 1)/2 
time series which characterizes the symmetric variance-covariance matrix. If 
each time series were generated by K parameters, then K. N * (N + 1)/2 
parameters must be estimated. Even though the number of parameters would 
grow as N 2, this kind of model would not capture the interdependence of the 
elements of the changing variance covariance matrix. 

In this paper we suggest a particular parsimonious structure for the 
conditional covariance matrix of asset excess returns and apply it to the 
pricing of Treasury bills. Convenient specifications are necessarily restrictive; 
the usefulness of the model depends on its ability to fit real data. We believe 
our model emerges from its confrontation with the Treasury bill data in 
pretty good shape. 

In the next section, we describe our covariance structure, discuss its 
attractive features, and its interpretation. Section 3 lays out the detailed 
statistical specification of our model and its relationship to Engle’s (1987) 
FACTOR-ARCH. In section 4, we use our model to explain the pricing of 
Treasury bills. Section 5 concludes the paper. 

2. Covariance structure 

Let y, E RN be a vector of asset excess returns’ with conditional mean 
vector pLt and covariance matrix H, (given all past information). Our purpose 

‘In this paper, the existence of a riskless asset is assumed. The excess return of an asset is 
defined as the difference between the l-period holding return of the asset and the l-period 
riskfree rate. 
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is to study the way in which H, changes as t changes. We suppose that 

(1) 

where 0 is an N x N positive semi-definite matrix, the pk’s are linearly 
independent (nonscholastic) N x 1 vectors, and the hkt’s are positive random 
variables. We require that K <N but hope that it will be much less than N. 
This covariance structure has two natural interpretations that are related to 
the factor model proposed by Ross (1976) for Arbitrage Pricing Theory. A 
typical factor model for asset excess returns is 

Y, = pt + ; g,, 'fkr + “,T 
k=l 

(2) 

where 

ktgkrE e-1, ‘jk, t, 

Et-dfkr) = 0, ‘jk,t, 

Et-dfktfir) = 0, Vj # k, Vt, 

Et-,(v,) = Et-I(U, lflr ,...,f&) =o, vt, 
E,_ r( Y,D,‘) = L2 . 

The fk,‘s are factors that affect the excess returns of all assets, u, is a 
vector of idiosyncratic noises, and the gkt’s are time varying vectors of factor 
loadings. 

The covariance structure specified in eq. (1) can be generated in this factor 
model setup under two different sets of additional assumptions. In the first 
case, gk, = pk. h\<2 and y_,(fkr) = 1 Vk, t; in the second case, g,, = pk and 
V,_ l(fkt) = A,, Vk, t. The first case is a time varying factor beta model in 
which the covariances (the betas) of different assets with a particular factor 
change proportionally. The response of each asset’s risk premium to the risk 
(own-variance) of a particular factor is constant. Assets’ risk premia change 
over time as the risk of particular factors changes. This model can also be 
interpreted as a dynamic factor model in which the factor loadings are 
constant over time but the factors themselves have time varying conditional 
second moments. Since the two interpretations lead to the same data 
generation process, they cannot be distinguished by the data. 
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The covariance structure has some attractive properties: 

Property I: The conditional covariance matrix of asset excess returns, H,, is 
guaranteed to be positive semi-definite. 

Property 2: Portfolios with excess return processes that have constant condi- 
tional variances can always be constructed. 

To see this, let w be an N-vector in the (nonempty) null space of 

[B i, . . . , fiK]‘, i.e., w’flk = 0 Vk. The conditional variance of the excess return 
of a portfolio constructed with w as the vector of weights is w’H,w = w’0rv 
which is a constant. 

Property 3: Portfolios with conditional excess return variances that can be 
used to replace the hk,‘s can afwuys be constructed. That is, Zf, can always be 
rewritten in the form 

(3) 

where the ek,‘s are the conditional variances of some portfolios of the N 
assets and R* is a time invariant N x N matrix. 

To see this, choose (Ye such that CY~ is orthogonal to pi, j # k, and 
(Y$I~ = 1. [Since the fik’s are linearly independent, such an uk always exists. 
If the pk’s are orthogonal, then cyk = flk/(Bipk).] The conditional variance 
of the excess return of Pk, = tr;y[, a portfolio constructed with (Ye as the 
vector of weights, is 

9,, = a; H,ak = A,, + sk, (4) 
where 

Sk = a;LQY,. 

Using eqs. (3) and (4), we can therefore write 

k=l 

where 
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The portfolios constructed using the uk’s as the weights are called ‘factor- 
representing portfolios’. They are zero net investment portfolios since each 
of the y, are excess returns. The portfolio weights can be either positive or 
negative. The conditional variance of each portfolio is perfectly correlated 
with its latent variable, A,,. Property 3 says that the information in the 
factor-representing portfolios is sufficient for predicting the variances and 
covariances of individual assets. In the terminology of Granger, Robins, and 
Engle (1984), there is causality in variance from the factor-representing 
portfolio to individual assets. This property allows us to study the dynamics 
of H, by examining the dynamic behavior of the conditional variances of the 
factor-representing portfolios which is a much easier thing to do. 

Property 4: The multiperiod forecasts of H, can be obtained easily from the 
multiperiod forecasts of the Ok,%. In particular, the forecast for H, + 7 at time 
t is simply 

(5) 
k=l 

This property is particularly useful for the valuation of derivative assets 
written on more than one asset and for capital budgeting problems when the 
multiperiod forecast of the conditional covariance matrix of asset excess 
returns plays an important role. 

Property 5: The ‘persistence’ of shocks to H, is determined by the ‘per- 
sistence’ of the shocks to the Okt’s. Specifically, for E,(H,+,) = H,, it is 
necessary and sufficient that E,(I~~~+~) = Okt Vt. 

This property is convenient for extending the works of Engle and 
Bollerslev (19861, Chou (19881, and Engle (1987) on integrated variance 
processes and cointegration in variance into a multivariate setting. 

Let (Pk, = a;yt, k = 1,. . . , K} be the excess returns of a set of K factor- 
representing portfolios. Also let 17,, be the risk premium of the kth 
factor-representing portfolio. The following asset pricing formula is consid- 
ered: 

k=l 

A simple derivation of (6) using the Consumption Beta model is provided 
in the appendix. Under an additional assumption about the constancy of 
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preferences through time, II,, can be expressed as a linear function of the 
conditional variance of the excess returns of the kth factor-representing 
portfolio. That is, 

Kct=clc+Yk~~kr~ k= l,...,K. (7) 

The derivation for (7) is also given in the appendix. While these models are 
explicitly derived from a CCAPM framework, they are also close approxima- 
tions to standard CAPM and APT models and we will continue to think of 
them from all three points of view. See, for example, Rothschild (1986). 

3. Econometric specification 

To complete the specification, an expression for Okr, or equivalently hk,, is 
needed. In principle, Okr can be any function of variables measurable with 
respect to the information set at time t - 1. However, a very general repre- 
sentation is likely to be impractical. Although imposing the structure (1) [or 
equivalently (311 can reduce the number of parameters to a large extent, a 
general formulation for the dynamics of the Okr’s still requires estimating the 
system of N assets as a whole. To simplify this problem, further restrictions 
on the dynamics of the 19~~‘s are sought. 

The simplest but most restrictive assumption is the ‘univariate portfolio 
representation assumption’. The set of K factor-representing portfolios is 
said to have a univariute portfolio representation if each of the excess return 
series (Pk,) of the factor-representing portfolios can be represented by a 
univariate time series process conditional on the full multivariate information 
set. An example of univariate portfolio representation is that the excess 
return of each of the K factor-representing portfolios follows an univariate 
ARCH-M model. Specifically, for all k = 1,. . . , K, 

Since ukr = CY;E, and e,, and A,, are related by & = A& + Sk [eq. (411, the 
above specification requires that the dynamics of hk, satisfy 

A,,= [tik+Sk((Pk-l)] +~k’((Y~&I--1)2+SDk’Akr-,. (9) 

Using eq. (8), the conditional covariance matrix of asset excess returns can be 
written as 
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where 

K 

c* = c &&O& + o* . 
k=l 1 

This is an example of the FACTOR-ARCH structure introduced by Engle 
(1987). It is also an example of the general positive definite structure 
proposed for multivariate ARCH models in Baba et al. (1987). 

With the univariate portfolio representation, consistent estimates of the 
@&r’s can be obtained from maximum likelihood estimation of the univariate 
time series model for the Pkr’s. Using these consistent estimates of ekt’s as 
predetermined variables, consistent (though not efficient) estimates of the 
Pkr’s can be obtained from univariate time series models for individual assets. 

A more general model can be achieved by relaxing the univariate portfolio 
representation assumption to a ‘recursive portfolio representation’ assump- 
tion. The set of K factor-representing portfolios is said to have a recursive 
portfolio representation if they can be rearranged such that the excess return 
of the k th portfolio depends only on information related to its own past and 
the past behavior of the excess returns of the first k - 1 portfolios. An 
example of a recursive portfolio representation is 

pkt=ck+Yk.ekt+uUkt, Uk, 1 K-1 “N(O,~k,), (11) 

If 4kj = qkj = 0 for j #k, then we are back to the univariate portfolio 
representation. If not, the information in one portfolio is useful in predicting 
the variance of another. In other words, there is ‘causality in variance’ from 
one factor-representing portfolio to another. Under (10, the conditional 
covariance matrix of asset excess returns can be written in the Baba et al. 
(1987) form as 

H, = C* + 2 (A&&,_,E;_lA; + GkHtGk}, 
k=l 

(12) 

where 

This model is also a special case of the FACTOR-ARCH model introduced 
by Engle (1987). The recursive portfolio representation allows us to obtain 
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consistent estimates of the ekt’s by sequential estimation of the single-equa- 
tion models for the excess returns of the factor-representing portfolios. 

An even more general specification is the ‘general portfolio representation 
assumption’. The set of K factor-representing portfolios is said to follow a 
general portfolio representation if the excess return of any factor-representing 
portfolio depends only on information related to the past behavior of the 
excess returns of all K factor-representing portfolios. With a general portfo- 
lio representation we can get consistent estimates of the ekr’s by estimating a 
multivariate model for the system of K factor-representing portfolios which 
is a much smaller system than that for all N assets. 

4. Application to the pricing of Treasury bills 

To investigate whether the FACTOR-ARCH specification given in the last 
two sections is useful in modelling the dynamic behavior of asset excess 
returns, we apply it to the pricing of the short end of the term structure. 

The data used in this paper consist of monthly percentage returns series on 
Treasury bills with maturities ranging from one to twelve months and the 
value-weighted index of NYSE & AMSE stocks. The Treasury bills data is 
obtained from the Fama Term Structure File in the 1985 CRSP Government 

n 
.; 

Ix 
ii 
: 
; 

C_L..L? 68.01 72.01 76.01 80.01 84.01 85.11 

Time 

Fig. 1. Monthly excess returns. 
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c4.e 68.01 72.01 76.01 80.01 84.01 85.11 

Time 

Fig. 2. Squared monthly excess returns. 

Bond Tape. The stock index data is obtained from the 1985 CRSP Index 
Tape. The sample period is from August 1964 to November 1985. 

From this dataset, the monthly excess returns of the 2- to 12-months 
Treasury bills (TB2,TB3,. . . , TB12) and the stock market portfolio are con- 
structed by subtracting from their monthly returns the l-month T-bill rate 
under the assumption that it represents a riskless return. Fig. 1 presents the 
plots of excess returns for 2-, 4-, 6, 8-, lo-, and 12-months maturities. Fig. 2 
gives the plots for the squares of the excess returns of these assets. Fig. 3 
shows the products of the excess returns of these assets with the excess 
return of the 3-months Treasury bill. Clearly, the excess returns of these 
T-bills have common periods of high volatility and therefore suggest the 
plausibility of the FACTOR-ARCH structure. 

Summary statistics for the excess return series are given in table 1. The 
Ljung-Box statistics, Q12 and QSZ2, reported in the last two columns of the 
table show significant serial correlations for both the levels and the squares 
of the excess returns series. Results from principal component analysis on the 
sample unconditional covariance matrix of the excess returns are provided in 
table 2. The unconditional covariance matrix is nearly singular. The largest 
eigenvalue represents 92% of the total variance and the first two are 99.6% 
of the total variance. It is also interesting to observe that the eigenvector 
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t+.,_? Ea.01 72.01 76.01 ea.01 84.01 85.11 

Time 

Fig. 3. Cross-product of monthly excess returns. 

Table la 

TB2 0.0307 0.0044 2.4956 16.414 
TB3 0.0569 0.0144 2.0764 12.538 
TB4 0.0613 0.0329 1.9510 13.825 
TB5 0.0758 0.0593 1.5406 11.779 
TB6 0.0755 0.0886 1.3491 11.040 
TB7 0.0712 0.1164 0.8580 8.213 
TB8 0.0908 0.1578 0.8278 8.973 
TB9 0.0954 0.2201 1.0647 11.172 
TBIO 0.0670 0.2809 0.9447 10.468 
TBII 0.0722 0.3319 0.8659 10.607 
TBl2 0.0672 0.4060 0.8290 9.819 
VWS 0.2606 19.536 0.0518 3.867 
EWB 0.0695 0.1161 1.1440 10.881 

Mean Variance Skew Kurt0 Q12 QS12 

45.765 
49.550 
33.512 
34.273 
45.973 
29.968 
31.078 
37.295 
31.567 
30.876 
34.089 
11.906 
35.698 

42.246 
59.816 
43.268 
55.475 
64.932 
89.530 
87.773 
62.285 
68.361 
73.197 
72.393 
21.792 
64.994 

aSkew is the coefficient of skewness, Kurt0 is the coefficient of kurtosis, Q12 and QSI2 are the 
Ljung-Box statistics for 12-order serial correlation in the levels and squares, respectively. 



R. Engle et al., Asset pricing with a FACTOR-ARCH covatiance shucture 223 

Table 2 

Principal component analysis on the unconditional covariance matrix asset excess returns. 

Rank in sizes Eigenvaiues Trace percentage 

1 19.67 92.23 
2 1.59 7.45 
3 0.03 0.14 
4 0.02 0.08 

Eigenvector for the Eigenvector for the 
largest eigenvalue 2nd largest eigenvalue 

TB2 - 0.0020 0.0124 
TB3 - 0.0044 0.0275 
TB4 - 0.0085 0.0430 
TBS -0.0121 0.0610 
TB6 - 0.0151 0.0758 
TB7 - 0.0173 0.0880 
TB8 - 0.0218 0.1029 
TB9 - 0.0262 0.1218 

TBIO - 0.0281 0.1370 
TBIl - 0.0276 0.1493 
TBI2 - 0.0377 0.1620 
VWS 1.2008 0.0195 

corresponding to the largest eigenvalue loads primarily on the stock index 
and the eigenvector corresponding to the second largest eigenvalue loads 
primarily on the T-bills. Although there is no immediate relationship be- 
tween the number of factors suggested by principal component analysis on 
the unconditional covariance matrix of asset excess returns and the number 
of ‘dynamic’ factors in our FACTOR-ARCH model, a 2-factor model seems 
to be a natural starting point. 

In order to implement the FACTOR-ARCH model, it is necessary to 
identify the portfolio weights for the factor-representing portfolios. While it 
is in principle possible to estimate these weights and other parameters of the 
model jointly using a maximum likelihood procedure, this is an approach left 
for further research. In this paper, factor-representing portfolios with pre- 
specified weights are constructed. Those selected for analysis are (i) a 
portfolio with equal weights on each of the bills and a zero on the stock 
index, which is labeled EWB, and (ii> a portfolio with zero weights on the 
bills and all weight on the stock index, which is labeled VWS. 

We start with a special case of a univariate portfolio representation: the 
specification given in eq. (8) which is simply the GARCH-M model used by 
Domowitz and Hakkio (19841, Engle, Lilien, and Robins (1987), and French, 
Schwert, and Stambaugh (1987). Maximum likelihood estimation using the 
BHHH algorithm yields the following estimated processes (t-ratios in paren- 
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theses): 

P EWB, = 0.0164 + 0.4646 * OEWBt + uEWBt , 

(1.00) (2.85) 

e EWB, = 0.0029 + 0.2756 . &rBr_, + 0.7340 . OEWB1_ ,, 
(2.05) (5.49) (19.2) 

P 
VWSt 

= - 3.376 + 0.1982 . Bvws, + uyws,, 
(- 1.5) (1.58) 

(13) 

(14) 

e = 1.9348 + 0.0518 .u;wSI_I + 0.8461 .t&,SI_,. 
VwS’ (1.68) (1.79) (12.6) 

Next, we test for causality in variance from EWB to VWS by testing 
~&,a,_~ as an additional variable in the variance equation of VFKS. The 
result is negative. The l-degree-of-freedom LM test statistic takes a value of 
0.4 which is insignificant at any reasonable level. We also test for causality in 
variance from I/wS to EWB by testing ubWS,_, as an additional variable in 
the variance equation of EWB. The l-degree-of-freedom LM test statistic 
takes a value of 7.2 which is highly significant. These results suggest a 
one-sided causality in variance from the stock factor to the bill factor. The 
recursive portfolio representation seems to be more appropriate than the 
univariate portfolio representation. 

The model for EWP is therefore re-estimated adding ~j?,,,+,~~ _ , and evwS, _ , 
as explanatory variables in the variance equation of EWB. Maximum likeli- 
hood estimation gives the following results (t-ratios in parentheses): 

P EWBt = 0.0046 + 0.6965 . eEWBt + uEWB*, 
(0.28) (4.00) 

8 - -0.031 + 0.2997 
EWBr -( - 2.4) (4.17) 

+ 0.0002 a u;~~,_ I + 0.0021 . eVwS,- ,. 
(0.97) (2.37) 

(15) 

Eqs. (14) and (15) are used as our generating models for V’WS and EWB, 
respectively. The GARCH effect is very strong for the excess returns of both 
EWB and VWS. 
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These models are subjected to a substantial battery of diagnostic checks. 
Tests for time-varying moments, for stability of the parameters across various 
regimes, for higher-order serial correlation or ARCH are all described below. 
Overall, the models perform surprisingly well. 

The 3-degrees-of-freedom likelihood ratio test statistic for the null hypoth- 
esis that PVws, is generated by a normal model with constant mean and 
variance is 14.343 which is significant at the 5% level. Similarly the 5-degrees- 
of-freedom LR test statistics for the null hypothesis that PEwB, is generated 
by a normal model with constant mean and variance is 148.63 which is highly 
significant. That is, (14) and (15) do much better than a standard normal 
model in fitting the data. 

To test for parameter instability after the change in operating procedure of 
the Federal Reserve in 1979/9, we construct a dummy variable which takes a 
value of 1 after 1979/8 and 0 otherwise. The stability test is a standard LM 
test for nonzero interaction between the parameters and the dummy variable 
and is computed as an LM test for omitted variables as in Engle, Lilien, and 
Robins (1987). The 5-degrees-of-freedom LM test for I/wS takes a value of 
6.2235 which is insignificant at the 5% level. The 7-degrees-of-freedom LM 
test for EWB takes a value of 15.1665 which is only marginally significant at 
the 5% level. Redefining the dummy to be 1 between September 1979 and 
October 1982, the test statistics become 6.74 for the Vws and 19.01 for EWB 
showing a significant split for bills at the 1% level. When a recession dummy 
which takes the value of 1 during all the NBER defined recessions, is 
interacted with all the coefficients the statistics become 22.01 for VW5 and 
15.38 for EWB. Thus there is some evidence of instability of the bill 
equations around a carefully specified Fed operating procedures dummy and 
of the equity equations around business cycles. However, both of these 
dummy variables were defined with hindsight and, since they could not have 
been accurately predicted px ante, may not be weakly exogenous to these 
markets. 

We further test for own u:_* in the variance equation of EWB and I/wS. 
The l-degree-of-freedom LM test statistics are 0.2897 and 0.102, respectively. 
Both are insignificant at any reasonable level. Ljung-Box statistics for 12- 
order serial correlations are also computed for the levels and squares of the 
normalized residuals of both series. The statistics for the levels of the 
normalized residuals of E WB and vu/s are 20.3036 and 11.637, respectively. 
The statistics for the squares of the normalized residuals of EWB and VWS 
are 15.5950 and 6.0837, respectively. They are all insignificant at the 5% level 
suggesting that there is little unexplained time dependence in the data. Based 
on the above evidence, (14) and (15) seem to provide a pretty good fit to the 
data. However, the coefficient of skewness and the coefficient of kurtosis of 
the normalized residuals [ - 0.11 and 3.57 for the VWS portfolio and - 0.35 
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and 4.49 for the EWB portfolio, respectively] indicate slight evidence of 
misspecification of the conditional distribution, although in Engle and 
Gonzales (1989) the consequences do not appear to be very severe. See also 
Weiss (1982, 1984) for theoretical consistency results. 

In the balance of the paper, these estimated conditional variances and risk 
premia for EWS and VIES are used as predetermined variables in the 
estimation of the conditional variances and risk premia of the Treasury bills 
based on (3) and (6). The model we estimate is 

yir = Pi + PEWsi . UEWB, + PVWSi ’ nVWSt + ‘it 9 (16) 

&it I S;- 1 N N(O, hi,) 7 

hi, = Oii + PiWBi . eEWBt + P;WSi ’ ‘VWSt. 

A constant term (IPi> is included in the mean equation to capture the part of 
the individual asset risk premium that is possibly related to ignored ‘static’ 
factors which have time-invariant conditional variances, covariances, and risk 
premia. (In our time series model, ‘static’ factors cannot be identified.) The 
estimation results for bills with 2-, 4-, 6-, 8-, lo-, and 1Zmonths maturities 
are reported in table 3. The odd maturities appeared in a previous draft of 
the paper and showed very similar behavior. The asymptotic t-ratios for the 

P VWSi ‘s are very small for most of the series suggesting that the data-gener- 
ating process might be a l-factor model with EWB as the only factor whose 
volatility is partly driven by the volatility of V’IVS. 

The models for individual bills are re-estimated as a l-factor model as 
follows: 

Yi, = pi + PEWBi . nEWB* + ‘it > sit I %-I N NC09 hi,) > (17) 

hi, = aii + P,CWBi * ‘EWBt ’ 

The results of maximum likelihood estimation using the BHHH algorithm are 
reported in table 4. Again, a battery of diagnostic tests is applied to each 
maturity bill and the results are given at the bottom of the table. These are 
very encouraging for the model. 

The l-degree-of-freedom LR test statistics for the null hypothesis that the 
excess return series are generated by normal models with constant means and 
variances are highly significant for all series as we expect. 
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Table 3 

Two-factor model for individual assets (r-statistics in parentheses).’ 

Y~I = % +PEWBi ‘nEWBr +PVWSI ‘nVWS~ +Et~ 

hi, =qir +P.,CwBi. eEWB, +PCWS; “VWSI 

TB2 TB4 TB6 TB8 TB10 TB12 

? 0.0142 0.0185 0.0017 - 0.002 - 0.063 - 0.053 
(5.468) (2.955) (0.152) (-0.10) (- 2.63) (- 1.99) 

Oii - 0.0002 - 0.001 - 0.007 -0.015 -0.019 0.0092 
( - 0.373) (- 1.68) ( - 0.48) ( - 0.52) ( - 0.37) (0.514) 

FEWB 0.1805 0.5270 0.8816 1.1735 1.6140 1.9275 
(15.94) (27.47) (21.32) (19.10) (18.56) (21.27) 

P VWSi 0.0042 0.0046 0.0184 0.0309 0.0360 -0.010 
(0.950) (0.326) (0.74 1) (0.981) (0.778) C-0.17) 

Fed79- 0.6112 0.7920 0.8455 
ARCH-h4 0.9261 0.6133 0.5530 
Static 1.0000 1.0000 1.0000 
Skew 0.6260 0.3343 - 0.265 
Kurt0 4.4988 5.0738 4.5294 
Ql2 1.0000 0.8459 0.9715 
QSl2 0.9082 0.7981 0.3134 

0.9407 0.9172 0.8680 
0.4156 0.8610 0.8021 
1.0000 1 .ooOO 1.0000 

- 0.420 - 0.590 - 0.406 
4.1815 4.6749 4.2033 
0.8590 0.9765 0.9987 
0.7721 0.7574 0.9823 

_ - 

aFed79- =X,’ point for LM test for structural change after 1979/9, 
ARCH-M =X5’ point for LM test for adding E:_, (j= 1,4) in variance equation and hi, in 

Static 
Skew 
Kurt0 

Q12 
QSl2 

mean equation, 
=X,’ point for LR test for H,: PEWa, = pvwsi = 0, 
= coefficient of skewness for normalized residuals, 
= coefficient of kurtosis for normalized residuals, 
=X,$ point for Ljung-Box (12) for normalized residuals, 
=X,$ point for Ljung-Box (12) for squares of normalized residuals. 

Parameter instability is again investigated using a standard LM test for 
nonzero interaction between the parameters and the dummy variables for 
changes in operating procedures by the Federal Reserve and for recessions. 
Eighteen tests are computed and three are significant at the 5% level, none 
at the 1% level. The 79-82 Fed dummy is significant for maturities of 4 and 6 
months and the Recession dummy is significant for the &months bills. In 
other words, after time-varying risk premia and time-varying conditional 
variances are accounted for by our model, parameter instability doesn’t seem 
to be a big problem. The test for ARCH-M is a test for the importance of 
own residuals in predicting own variances and risk premia. It is not significant 
for any of the maturities. 

We also tested the restriction that the beta in the variance equation is the 
square of the beta in the mean equation, as implied by eq. (61, and the risk 
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Table 4 

One-factor model for individual assets (t-statistics in parentheses).” 

Yir = U: + PEWBi. ~EWB~ + Eit 

ht~ = ud + PiWSt eEWB~ 

TB2 TB4 TB6 TB8 TBIO TB12 

pi 0.0139 0.0181 0.0008 - 0.005 - 0.063 - 0.049 
(5.584) (3.393) (0.072) (- 0.28) (- 2.86) (- 1.89) 

Oii 0.00005 - 0.001 - 0.001 - 0.0003 - 0.004 0.0077 
(0.446) (-3.16) (- 0.92) (- 0.079) ( - 0.84) (0.854) 

P EWE; 0.1802 0.5249 0.8890 1.1657 1.6206 1.9212 
(20.64) (30.16) (24.60) (24.16) (25.83) (23.00) 

Fed79- 
Fed79-82 
Recess 
ARCH-M 
Static 
Skew 
Kurt0 
012 
QS12 

0.7045 0.8166 
0.3148 0.9544 
0.1735 0.9592 
0.8972 0.5061 
1 .oooo 1 .oOOo 
0.6121 0.3302 
4.5081 5.0162 
1 .ooOO 0.8304 
0.9357 0.7686 

0.8757 0.8142 0.9045 0.8060 
0.9625 0.8437 0.8326 0.9126 
0.7858 0.7206 0.6513 0.4901 
0.5094 0.1124 0.7719 0.7587 
1.0000 1.0000 1 .oOOo 1.0000 

-0.277 - 0.418 - -0.608 - 0.407 
4.5353 4.2020 4.6390 4.1926 
0.9587 0.7901 0.9541 0.9986 
0.2740 0.7015 0.6360 0.9817 

aFed79- = Xi point for LM test for structural change after 1979/g, 
Fed79-82 = Xi point for LM test for structural change from 1979/9 to 1982/10, 
Recess =X2 point for LM test for structural change during recessions, 
ARCH-M = X2 point for LM test for adding rf _j (j = 1,4) in variance equation and hi, in 

Static 
Skew 
Kurt0 
Q12 
QSl2 

mean equation, 
= Xf point for LR test for Ha: PEWsi = Rvwsi = 0, 
= coefficient of skewness for normalized residuals, 
= coefficient of kurtosis for normalized residuals, 
= X,r, point for Ljung-Box (12) for normalized residuals, 
= XF, point for Ljung-Box (12) for squares of normalized residuals. 

premium theory embodied in the FACTOR-ARCH-CCAPM model. To test 
this null hypothesis, we consider the following artificial model: 

(18) 

Under the null hypothesis that the restriction is valid, dEWBi = 0 Vi. The 
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Fig. 4. Factor betas of Treasury bills. 

l-degree-of-freedom LM test statistics are: 

TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TBIO TBll TB12 

1.1 0.11 0.19 0.08 0.25 0.16 0.34 0.56 1.1 2.7 

They are insignificant for all excess returns series. 
As further specification checks, the Ljung-Box statistics for 1Zorder serial 

correlations in the levels and squares of the normalized residuals from our 
l-factor model are also reported in table 4. The normalized residuals for the 
excess returns of the 2-months and 1Zmonths T-bills and the squares of the 
normalized residuals for the excess returns of the 1Zmonths T-bills show 
significant autocorrelation. Moreover, the coefficient of skewness and the 
coefficient of kurtosis for the normalized residuals reported in the same 
tables do not support the conditional normality assumptions. Although these 
results indicate possible misspecification in the distributions of excess returns 
or the number of factors or the weights for the factor-representing portfolios, 
the bulk of the diagnostic tests give rather strong support to the model. 

The plots for the estimates of the PEWBI’s, as reported in table 4 and in 
Engle, Ng, and Rothschild (19891, are provided in fig. 4. The picture unam- 
biguously reveals that the risk premia and volatilities of T-bills with longer 
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Table 5 

Predicting term premia with Campbell’s instruments (t-statistics, computed using White-hetero- 
scadasticity-consistent standard errors, in parentheses).a 

y,, = Ti + jJ alj. X,, + e,, 
j=l 

TB2 TB4 TB6 TB8 TBlO TBI2 
_____ 

*, 0.019 - 0.071 -0.124 - 0.152 
(- 1.25) (- 1.76) (- 1.84) (- 1.71) 

a,, 0.0054 0.0153 0.0215 0.0264 
(2.144) (2.134) (1.831) (1.699) 

ai 0.0165 - 0.064 - 0.182 - 0.231 
(0.916) (- 1.23) (- 1.85) (- 1.64) 

a,3 0.0164 0.0809 0.1790 0.0842 
(1.378) (2.487) (2.954) (2.661) 

ai - 0.006 - 0.022 - 0.048 0.0405 
(- 0.78) (- 1.16) (- 1.52) (- 1.57) 

aX, = l-month bill rate, 
X, = Z-months less l-month bill rate, 
X, = 6-months less l-month bill rate, 
X, = l-month lag of the 2-months bill excess return. 

- 0.273 - 0.213 
(- 2.29) (- 1.45) 

0.0346 0.0242 
(1.700) (0.989) 

- 0.310 - 0.301 
(- 1.66) (- 1.28) 

0.3263 0.3479 
(2.970) (2.485) 

- 0.084 -0.101 
(- 1.46) (- 1.46) 

maturity are more sensitive to changes in the conditional variance of EWB. 
The superiority of the FACTOR-ARCH model over the GARCH-M model 
suggests that the conditional variances and covariances of the excess returns 
of the T-bills tend to move together. The predictability of the risk premia of 
the T-bills, as suggested by Campbell (1987), is also confirmed. Moreover, 
since the estimates for the models for the excess returns of the factor- 
representing portfolios, given in (14) and (151, reveal that the variance 
processes of VW and EWB are near-integrated, the T-bills seem to have 
‘persistent variances and covariances’ in the sense that the current informa- 
tion remains important for the forecast of the conditional covariance of the 
excess returns of the T-bills for all horizons. 

Another way to assess the quality of our results is to see how well they 
explain Campbell’s (1987) finding that he could predict the risk premia of 
interest rates with several yield and yield spread variables. They are: the 
l-month bill rate (Xi), the 2-months less l-month bill rate (X,>, the 6-months 
less l-month bill rate (X3>, and the l-month lag of the 2-months bill excess 
return (XJ. It would be convincing evidence for our model and for the 
proposition that risk premia change in response to changes in (conditional) 
second moments if the instruments which Campbell used to predict risk 
premia had no predictive power in a model with a FACTOR-ARCH covari- 
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Table 6 

One-factor model for individual assets with Campbell’s instrumental variables (r-statistics in 
parenthesesla 

4 

Y,I = F +PEWB, ‘~~EwB, + Cai,.xjr+Elt 
]=I 

TB2 TB4 TB6 TB8 TBIO TBI2 

K 0.0091 0.0098 - 0.007 0.0025 - 0.030 
(0.991) (0.535) (-0.21) (0.057) ( - 0.56) 

a,i 0.00007 - 0.0008 - 0.001 -0.0017 - 0.006 
(0.584) (- 1.73) C-0.74) ( - 0.55) (- 1.50) 

PEWB, 0.1763 0.5088 0.8592 1.1675 1.5929 
(19.09) (28.91) (23.99) (23.70) (25.65) 

a,, - 0.0004 0.0014 - 0.006 - 0.010 - 0.018 
C-0.23) (- 0.43) (- 1.21) (- 1.39) (- 1.91) 

a,2 0.0185 0.0160 - 0.010 0.0197 0.0372 
(1.544) (0.474) C-0.18) (0.261) (0.356) 

a r3 0.0072 0.0342 0.1032 0.1095 0.1638 
(0.842) (1.710) (2.981) (2.205) (2.388) 

a,4 - 0.004 - 0.016 - 0.037 - 0.062 - 0.090 
C-0.85) (- 1.18) (- 1.62) ( - 2.02) (-2.18) 

FACTOR-ARCH 0.9682 0.9092 0.9945 0.9869 0.9956 

aFACTOR-ARCH = X,” point for LR test for H,: a,, = a,, = ar3 = ar4 = 0, 

Xl = l-month bill rate, 
x2 = 2-months less l-month bill rate, 
x3 = 6-months less l-month bill rate, 
x4 = l-month lag of the 2-months bill excess return. 

- 0.0389 
(0.522) 

0.0084 
(0.891) 

1.8650 
(21.89) 

- 0.034 
(- 2.83) 

- 0.003 
(- 0.02) 

0.2367 
(2.731) 

-0.113 
(-2.18) 

0.9989 

ante structure. It would be negative evidence if the FACTOR-ARCH betas 
were no longer significant. 

To study this, we examine the following two models for individual asset 
excess returns: 

yit = Pi + C . xjt + ei,, 
j=l 

(19) 

yi, = Pi + P,KwBi ’ n/Y.+fBt + t ai, . xjt + &it 7 (20) 

j=1 

The first model, as described by eq. (191, is a simple linear model with 
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Fig. 5. One-month bill rate. 

Campbell’s instruments as explanatory variables. The second one, as de- 
scribed by eq. (20), is our FACTOR-ARCH model augmented by Campbell’s 
instruments in the mean equation. The estimation results are reported in 
tables 5 and 6. The betas are very similar in size and significance to those in 
table 4. To examine the performance of the instruments, their estimated 
coefficients for the two models are plotted in figs. 5, 6, 7, and 8. The picture 
that conforms most to our anticipation is fig. 6. In that figure, the estimated 
coefficients corresponding to the 2-months less l-month bill rate under both 
models are plotted. While the absolute value of the estimated coefficients are 
larger for bills with longer maturities under the simple linear model, the 
estimated coefficients are very close to zero and show no pattern of any kind 
under our augmented FACTOR-ARCH model. Figs. 5 and 7 also indicate 
that the coefficients corresponding to the l-month bill rate and the 6-months 
yield spread are smaller under our FACTOR-ARCH model with only the 
exception of one coefficient for the 8-months Treasury bill. The worst picture 
is fig. 8 which is for the lagged 2-months excess return. The estimated 
coefficients under both models are very close except for the 8-months 
Treasury bill. Nevertheless, in general the figures do indicate that the 
predictive power of Campbell’s instruments are smaller under our augmented 
FACTOR-ARCH model. The individual r-statistics for Campbell’s instru- 
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Fig. 8. Laggeed two-months excess return. 

ments and the likelihood ratio statistics for the exclusion of all instruments 
reported in table 6 are, however, a little bothering. The t-statistics for the 
coefficients corresponding to the 6-months less l-month bill rate and the 
lagged 2-months excess return are significant for bills with longer maturities. 
The highest t-statistic corresponding to the 6-months yield spread is the one 
for TB6 and the highest t-statistic corresponding to the 2-months yield 
spread is the one for TB2. Therefore it is quite likely that at least part of the 
remaining predictive power of Campbell’s instruments come from measure- 
ment error which is common to both excess return and its matching yield 
spread variable as in Stambaugh (1988) and McCulloch (1987). The fact that 
the likelihood ratio statistics for the exclusion of all instruments are signifi- 
cant for all but the 4-months Treasury bill, suggests the possibility of a 
second bill factor. 

5. Conclusion 

In this paper, we have proposed a FACTOR-ARCH structure for the 
conditional covariance matrix of asset excess returns coupled with a con- 
sumption beta, CAPM or APT theory of the corresponding time-varying risk 
premia. Empirical tests of this structure with Treasury bills supports the 
specification. An equally-weighted bill portfolio is effective in predicting both 
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the volatility and the risk premia of individual maturities. There is little 
evidence that more accurate forecasts could be made using past information 
on the individual return histories. The EWB portfolio is called therefore a 
factor-representing portfolio which in this paper is taken to have prespecified 
weights. The volatility of this portfolio can itself be forecast by the volatility 
of the equity markets as summarized by the CRSP value-weighted index. 
Thus a volatility shock in equity markets leads to an increase in the volatility 
in the bill market and to an increase in the associated risk premia. 

The model introduced in this paper can, in principle, be used for many 
standard exercises in finance including: forecasting the yield curve, valuing 
derivative assets written on more than one primary asset, selecting portfolios 
with particular dynamic properties, studying the predictability of asset risk 
premia, and measuring the persistence of asset return volatilities. However, it 
seems likely that future work will suggest more elegant and more convincing 
ways of estimating and assessing this model. Among the important economet- 
ric problems which we have left unsolved are devising methods for estimating 
(rather than imposing) both the number of factors and the weights of the 
factor-representing portfolios. 

Appendix 

Let Rf be the rate of change of the marginal utility of consumption at time 
t for a representative agent with time-separable von Neuman-Morgenstern 
utility. Assuming that the stochastic behavior of RF and y, (the vector of 
asset excess returns) are given by the following dynamic factor model: 

K 

Y, = Pf + c Bk .fkr + Uf, 
k=l 

K 

R; = /_L; + c b, . fk, + uf, 
k=l 

where 

I.c,,/4E z-1, Vt, 

Et-,(fkr) =O, Vk, t, 

Et- ,(f&) = 0, 

E,-,(u,) = Et-,(u-, lf,r ,...,fK,) =o, 

t/j # k, Vt, 

Vt, 

E,-,(u;) =Er_,(u:Ifl,,...,fKf) =O, Vt, 

v,-dfk,) =4x,7 Vk, t, 

E,-du,~,‘) = 0, E,_r(v,(uf) =O, v,_,(uf) =cr,‘, tit, 
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then 

Under the Consumption Beta Model, as in for example Hansen and Single- 
ton (1983), asset risk premia will satisfy the following pricing equation: 

In our case, this becomes simply 

where 6, is a preference parameter. 
The risk premium of the k th factor-representing portfolio is 

Using (A.21, eq. (A.11 can be rewritten as 

(A.1) 

(A.3 

(A.31 

which is exactly eq. (6) in section 2. 
Since Ok, (the conditional variance of the k th factor-representing portfolio) 

is related to A,, by ek, = Akr + sk [section 2, eq. (4)], under the additional 
assumption that 6, = 6 Vt, eq. (A.2) can be rewritten as 

&=ck+Y.&, (A.41 

where ck = -6 . b,s, and yk E 6 . b,. Eq. (A.41 is exactly eq. (7) in section 2. 
The same results can in fact be obtained under still weaker assumptions. 

See for example Campbell (1987). The assumption that the conditional 
covariances between LJ,, fk,, and u; are zero can be replaced by the assump- 
tion that they are time-invariant. 
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