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ABSTRACT
Financial risk management has generally focused on short-term risks
rather than long-term risks, and arguably this was an important
component of the recent financial crisis. Econometric approaches to
measuring long-term risk are developed in order to estimate the term
structure of value at risk and expected shortfall. Long-term negative
skewness increases the downside risk and is a consequence of asym-
metric volatility models. A test is developed for long-term skewness. In
a Merton style structural default model, bankruptcies are accompanied
by substantial drops in equity prices. Thus, skewness in a market factor
implies high defaults and default correlations even far in the future cor-
roborating the systemic importance of long-term skewness. Investors
concerned about long-term risks may hedge exposure as in the In-
tertemporal Capital Asset Pricing Model (ICAPM). As a consequence,
the aggregate wealth portfolio should have asymmetric volatility and
hedge portfolios should have reversed asymmetric volatility. Using es-
timates from VLAB, reversed asymmetric volatility is found for many
possible hedge portfolios such as volatility products, long- and short-
term treasuries, some exchange rates, and gold. ( JEL: G01)

KEYWORDS: ARCH, GARCH, Hedge portfolios, long-term risk, ICAPM,
skewness, systemic risk

The financial crisis that engulfed the global economy in 2008 and 2009 has been
described and diagnosed by many. A thoughtful discussion of the causes and
remedies can be found in Acharya and Richardson (2009), Acharya et al. (2010),
or Brunnermeier et al. (2009) in the Geneva Report. While there are many complex
underlying causes, there are two key features of all analyses. First is the failure of
many risk management systems to accurately assess the risks of financial positions,
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and the second is the failure of economic agents to respond appropriately to these
risks. The explanations for the failure to act are based on distorted incentives due to
institutional structures, compensation practices, government guarantees, and reg-
ulatory requirements. In short, many agents were paid well to ignore these risks.
These two features are inextricably linked, and it is unlikely that we will be able to
quantify the relative importance of miss-measurement of risk from the incentives
to ignore risk. The wide-ranging legislative approach to reregulating the financial
sector is designed to reduce the mismatch of incentives. This includes systemic
risks, “too big to fail” firms, counterparty risks in Over the Counter (OTC) deriva-
tives markets, government bank deposit guarantees as a distorting factor in pro-
prietary trading, and many other institutional features.

In this paper, I would like to focus primarily on the question of whether risks
were then or are now being measured appropriately. Was this financial crisis fore-
cast by risk managers? Was this crisis in a 99% confidence set of possible outcomes?
Was there economic or econometric information available that was not being used
in risk assessment and how could risk management systems be augmented to take
such factors into account?

In approaching this question, I will examine the performance of simple risk
measurement systems that are widely used but will not attempt to document what
was in place at what institution. The most widely used measure and one that has
been frequently criticized is the value at risk (VaR) of a firm or portfolio. This is
the 1% quantile of the distribution of future values and is typically defined over
the next trading day. A preferable number for theoretical reasons is the expected
shortfall or the loss that is expected to occur if the VaR is exceeded. Both of these
measures are based on a volatility forecast, and it is natural to examine the accu-
racy of volatility forecasts in this economic environment.

Each of these measures is defined over a 1-day horizon. In some cases, longer
horizons are used such as a 10-day horizon, but the risk measures for these longer
horizons are simply scaled up on the assumption that the risk is constant. For
example, the 10-day VaR is typically computed as the square root of 10 times
the 1-day VaR. Both measures require statistical assumptions in order to estimate
and forecast risk. The precision and stability of the measures depends upon the
methodology being used.

A recent study, Brownlees, Engle, and Kelly (2009), has examined the real-time
forecasting performance of volatility models for a variety of different methods
and assets. These are daily models based on a range of asymmetric Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) models reestimated pe-
riodically. The surprising finding is that these models showed almost no deteriora-
tion during the financial crisis. Using a statistical loss function, volatility forecasts
were just as accurate during the crisis as before it, and risk management based
on these forecasts was also robust to the crisis. This finding appears in conflict
with the quoted observation that risk managers underestimated risk. The impor-
tant issue is that both volatility forecasting and calculations of VaR and ES are
computed as 1 day ahead forecasts. The financial crisis was predictable one day ahead.
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It is immediately clear that this is not enough notice for managers who invest in
illiquid assets such as the mortgage backed securities at the center of the crisis.
Risk management must give more warning if it is be useful.

The short-run nature of VaR, and ES is a very important feature. Positions
held for more than one day will have additional risk due to the fact that risk itself
can change. Engle (2009b) describes this as the “risk that the risk will change.”
Most investors and financial firms hold positions much longer than one day and
consequently, changes in risk will be a very important determinant of returns. A
market timing approach to the holding period of assets might attempt to close
positions before the risk increases, but this is bound to be unsuccessful for the
average investor.

Consider the situation prior to this crisis. From 2003 until mid 2007, volatil-
ities were very low, and from 2002 until mid 2004, short-term interest rates were
very low. Thus, highly leveraged positions in a wide range of securities had low
short-term risk. Many financial institutions everywhere in the globe took on these
positions, but when volatilities and interest rates rose, the value of the positions
fell dramatically precipitating the financial crisis. Many economists and analysts
viewed the rise in interest rates and volatility as likely and the options market and
fixed income market certainly forecast rises, yet our simple risk measures did not
have a way to incorporate these predictions. Thus, an important challenge to risk
assessment is to develop measures that can capture both short- and long-term risk.

In the next section, a term structure of risk will be estimated for various volatil-
ity models. Section 4 will develop a test for long-term skewness to see if standard
volatility models are capable of modeling this characteristic of the data and the risk
it generates. In Section 5, the economic underpinning of the asymmetric volatility
models is developed along the lines first suggested by French, Schwert, and Stam-
baugh (1987). Section 6 extends this logic to hedge portfolios as in the Merton
(1973) ICAPM. These hedge portfolios provide a solution to asset allocation with
changing state variables. It is argued that this solution would reduce the systemic
risk of the financial system if it were widely adopted.

1 TERM STRUCTURE OF RISK

To reflect the variety of investment horizons available to financial firms, this paper
will follow Guidolin and Timmermann (2006) and define a term structure of risk
which is a natural analogy with the term structure of interest rates and the term
structure of volatility. Risk measures are computed for horizons from one day to
many years which illustrate both short- and long-term risks. The measures are de-
fined to consider the losses that would result from extreme moves in underlying
asset prices over these different horizons. Major risks that will take time to unfold
will lead to high long-term risks relative to short-term risks.

There are some conceptual issues in defining such risks, but the serious chal-
lenge is how to measure them. The ultimate goal is to choose investment strategies
that are optimal in the face of such term structures of risk.
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If the value of a portfolio at time t is St and its log is st, then the loss is the
difference between the date T value and the current value. Hence, the VaR at level
alpha and horizon T per dollar invested is given by

Pt(St+T/St − 1 < −VaRα,T) = α. (1)

Equivalently,

Pt(st+T − st < log(1−VaRα,T)) = α. (2)

The evaluation of this expression requires a model of the distribution of this asset
at time t+T. Because this expression reflects the distribution of returns, it incorpo-
rates information on both expected returns and deviations from expected returns.
For short horizons, it does not matter whether expected returns are considered or
not but for longer horizons, this distinction is very important. After all, if expected
returns are positive then long horizon returns will be proportional to T and since
volatility is proportional to the square root of T, ultimately for sufficiently large T,
VaR will be negative.

A variation on traditional VaR will be used here to separate forecasts of risk
and return. VaR0 will be defined as the α quantile of losses assuming expected
continuously compounded returns are zero. Expected losses from holding the asset
therefore can be estimated without a model of expected returns. This definition
becomes

Pt(st+T − Etst+T < log(1−VaR0
α,T)) = α. (3)

Consequently, the relation between the two measures of VaR is approximately

VaRα,T ∼= VaR0
α,T − μT, (4)

where μ is the expected return. Clearly, the larger the estimate of μ, the less risky
the asset appears thereby confounding the separate estimation of risk and return.
Since riskier assets will generally have higher expected returns, the measure of
risk and return should be constructed separately and then combined in portfolio
choice.

Measures based on VaR are widely criticized from at least two additional
points of view. The first is theoretical in that this measure is not coherent in the
sense that it does not satisfy natural axioms of diversification. The second criticism
is that by ignoring the size of the risk in the alpha tail, VaR encourages traders to
take positions that have small returns almost always and massive losses a tiny frac-
tion of the time. A measure designed to correct these flaws is ES which is defined
as the expected loss should VaR be exceeded. Hence,

ESα,T = −Et(St+T/St − 1|St+T/St < 1−VaRα,T) (5)
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and

ES0
α,T
= −E0

t (St+T/St − 1|St+T/St < 1−VaR0
α,T
). (6)

Again the superscript 0 refers to the assumption that the mean logarithmic return
is zero. The advantage of ES is also its disadvantage—it is difficult to estimate the
losses in the extreme tail of the distribution.

An approach to estimating these losses is to use extreme value theory. In this
approach, the tails of the distribution have the shape of a Pareto or Frechet dis-
tribution regardless of the underlying distribution within a wide and reasonable
class of distributions. Only one parameter is required in order to have an estimate
of the probability of extremes even beyond any that have been experienced. The
Pareto distribution is defined by

F(x) = 1− (x/x0)
−λ, x � x0 > 0. (7)

The larger the parameter λ, the thinner the tails of the distribution. As well known,
x has finite moments only for powers strictly smaller than λ, see, for example, Mc-
Neil, Embrechts, and Frey (2005). The tail parameter of the student-t distribution
is its degrees of freedom. The Pareto density function is

f (x) = λ(x/x0)
−λ−1/x0, x > x0 > 0. (8)

And the mean of x, given that it exceeds the threshold, is given by

E(x|x > x0) =
λx0

λ− 1
, λ > 1. (9)

The estimation of tail parameters is done on losses not on log returns. Thus x is
interpreted as

xt = 1− St+T/St (10)

Assuming that the tail beyond VaR is of the Pareto form and recognizing that it
can directly be applied to the lower tail by focusing on losses as in Equation (10),
an expression for the expected shortfall is simply

ES0
α,T
= VaR0

α,T

(
λ

λ− 1

)
. (11)

A common approach to estimating λ is the Hill estimator. See McNeil, Embrechts,
and Frey (2005). This strategy defines a truncation point x0 such that all data ex-
ceeding this value are considered to be from a Pareto distribution. These observa-
tions are used to form a maximum likelihood estimator (MLE) of the unknown tail
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parameter. Assuming all losses exceeding VaR follow such a Pareto distribution,
the Hill estimator is

λ̂ =

∑
t∈Exceed

1

∑
t∈Exceed

log(zt)
, zt =

1− ST+t/St

VaR0
α,T

. (12)

It has been shown that under some regularity conditions, see Resnick and Starica
(1995), and references therein, Hill’s estimator is still consistent for the tail index
of the marginal distribution in a time series context if this marginal distribution is
assumed to be time invariant.

2 ESTIMATING THE TERM STRUCTURE OF RISK

In order to estimate these measures for a real data set at a point in time, a simula-
tion methodology is natural. This of course requires a model of how risk evolves
over time. A familiar class of models is the set of volatility models. These mod-
els are empirically quite reliable and find new applications daily. However, they
do not have a rigorous economic underpinning although some steps along this
path will be discussed later in this paper. Each volatility model could be the data-
generating process for the long-term risk calculation. For a recent analysis of the
forecasting performance of these volatility models during the financial crisis, see
Brownlees, Engle, and Kelly (2009).

The simulation methodology can be illustrated for the simple GARCH(1,1)
with the following two equations:

rt =
√

htεt,
ht+1 = ω+ (αε2

t + β)ht.
(13)

These equations generate returns, r, as the product of the forecast standard devi-
ation and an innovation that is independent over time. The next day conditional
variance also depends on this innovation and forecast standard deviation. Thus,
the random shock affects not only returns but also future volatilities. From a time
series of innovations, this model generates a time series of returns that incorpo-
rates the feature that volatility and risk can change over time. The distribution
of returns on date T incorporates the risk that risk will change. Two simulations
will be undertaken for each model, one assumes that the innovations are stan-
dard normal random variables, and the other assumes that they are independent
draws from the historical distribution of returns divided by conditional standard
deviations and normalized to have mean zero and variance one. This is called the
bootstrap simulation. It is also called the Filtered Historical Simulation (FHS) by
Barone-Adesi, Engle, and Mancini (2008).

A collection of asymmetric volatility processes will be examined in this pa-
per but the list is much longer than this and possibly the analysis given below
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will suggest new and improved models. See, for example, Bollerslev (2008) for a
comprehensive list of models and acronyms.

TARCH : ht+1 = ω+ αr2
t + γr2

t Irt<0 + βht,

EGARCH : log(ht+1) = ω+ α|εt|+ γεt + β log(ht), εt = rt/
√

ht,

APARCH : hδ/2
t+1 = ω+ α(|rt| − γrt)δ + βhδ/2

t ,

NGARCH : ht+1 = ω+ α(rt − γ
√

ht)2 + βht,

ASQGARCH : ht+1 = ω+ βht + (α(r2
t − ht) + γ(r2

t Irt<0 − ht/2))h−1/2
t .

(14)

Each of these models can be used in place of the second equation of (13).
In the calculations below, parameters are estimated using data on S&P500 re-

turns from 1990 to a specified date. These parameter estimates and the associated
distribution of standardized returns are used to simulate 10,000 independent sam-
ple paths 4 years or 1000 days into the future. For each of these horizons, the risk
measures described above are computed.

In Figure 1, the 1% quantile is plotted for the normal and bootstrap version of
Threshold Autoregressive Conditional Heteroskedasticity (TARCH) from August
1, 2007 which is often thought to be the onset of the financial crisis. The quantile is
superimposed on the S&P stock price over the next 2 years.

It is clear from this picture that the 1% quantile was very pessimistic for a year
or more. However, the market minimum in March 2009 was substantially below

Figure 1 1% Quantiles of S&P500 starting August 1, 2007.
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the simulation based on normal errors and approximately equal to the bootstrap
simulation of the TARCH. The probabilistic statement here should be taken care-
fully. These bands have the property that at any horizon, the probability of exceed-
ing the band is 1%. This does not mean that the probability of crossing the band
somewhere is 1%, presumably it is substantially greater. Furthermore, by choosing
the very beginning of the crisis as the starting point, I am again being nonrandom
in the choice of which curves to present.

In Figure 2, the same quantiles are plotted from three other starting points,
January 2008, September 2008, and June 2009, the end of the sample.

Clearly, the quantile starting in September 2008 just before the Lehman
bankruptcy was quickly crossed. Now in 2010, it appears that the quantile starting
in June will not be crossed at all but perhaps we should wait to see.

In comparison, several other quantile estimates are computed. Particularly in-
teresting are the quantiles when returns are independent over time. Also com-
puted are quantiles from EGARCH and APARCH models. These are shown in
Figure 3 clustered between the TARCH and the i.i.d. quantiles.

The quantiles for i.i.d. shocks show far less risk than all the other models and
they do not depend upon whether the shocks are normal or bootstrapped. The
quantiles for the EGARCH and APARCH also depend little on whether the shocks
are normal or bootstrapped. In fact, these models perform rather similarly.

For each of these simulations and for each horizon, the ES can be estimated
empirically and the tail parameter can be estimated by the Hill estimator thus
giving an alternative estimate of the ES using Equation (11).

Figure 2 1% Bootstrap Quantiles from various starting points.
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Figure 3 1% Quantiles for TARCH, APARCH, EGARCH, and i.i.d. sampling.

For each method, the tail parameter is estimated for each horizon and is
presented in Figure 4. The smaller the number, the fatter the tail. As can be seen,
the tails for all methods become thinner as the horizon increases and the distribu-
tion gradually approaches the normal. For the bootstrapped TARCH, the tails are
most extreme. When this parameter drops below four, the fourth moment does not
exist. The two i.i.d. methods have distributions that converge with the number of
replications to normal distributions rather than Frechet, hence, the tail parameter
is not well defined and these estimates are presumably not consistent. The other
methods are broadly similar which suggests that the tail parameter can perhaps be
inferred from the horizon.

Based on these tail parameters and the quantiles computed above, the ES can
be easily estimated. As the tail parameters should be approximately invariant to
the choice of tail quantile, this provides a measure of ES that can be computed for
any probability. These are shown in Figure 5.

Clearly, the highest losses are for the bootstrapped TARCH model and the
lowest are for the i.i.d. models. The others are broadly similar.

3 LONG-TERM SKEWNESS

It is now widely recognized that asymmetric volatility models generate multi-
period returns with negative skewness even if the innovations are symmetric. This
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Figure 4 Tail parameters at different horizons for different models.

Figure 5 ES by horizon and method computed from tail parameter.
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argument is perhaps first emphasized by Engle (2004). The explanation is simple.
Since negative returns predict higher volatilities than comparable positive returns,
the high volatility after negative returns means that the possible market declines
are more extreme than the possible market increases. In Berd, Engle, and Voronov
(2007), an expression for unconditional skewness at different horizons is given.
Here, a simulation will be used to estimate how skewness varies over horizon.

Skewness is defined in terms of long horizon continuously compounded or
log returns as

skt(T) =
Et(st+T − st − μ)3

[Et(st+T − st − μ)2]3/2 , μ = E(st+T − st). (15)

In a simulation context, this is easily estimated at all horizons simply by calculating
the skewness of log returns across all simulations. This is naturally standardized
for the mean and standard deviation of the simulation. By using log return, this
measure focuses on asymmetry of the distribution. A distribution is symmetric if
an x% decline is just as likely as an x% increase for any x% change. Hence, skew-
ness is a systematic deviation from symmetry and negative skewness means that
large declines are more likely than similar size increases.

For the horizons from 1 to 100 days, Figure 6 presents the results. All the
skewness measures are negative and are increasingly negative for longer horizons.
The simulations based on the normal distribution start at zero while the measures
based on the bootstrap start at −0.4. However, after 50 days, the TARCH has fallen
substantially below the other methods. The unconditional skewness of the data on
SP500 returns from 1990 to 2009 is also plotted in this graph. This is also strongly
negatively skewed becoming more negative as the term of the return is increased.
The striking feature, is that the data are more negatively skewed than any of the
models, at least between 5 and 45 days.

In Figure 7, the same plot is shown for longer horizons. Now, it is clear that
the bootstrap TARCH is the most negative and the data are the least negative. It
may also be apparent in the simulation that the bootstrap TARCH is very unstable.
Presumably, it does not have finite sixth moments so the skewness is not consis-
tently estimated. The other five estimators are rather similar. The most negative
skewness is for approximately 1-year horizon and for still longer horizons, the
skewness gradually approaches zero. However, this is extremely slow so that the
skewness at a 4-year horizon is still −1.

4 TESTING LONG-TERM SKEWNESS

It is not clear that these models give accurate estimates of skewness of time
aggregated returns. The data appears to be more negatively skewed for short hori-
zons and less negatively skewed for long horizons than the models. The mod-
els are estimated by maximum likelihood but this focuses on the one step ahead
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Figure 6 Skewness of different methods.

Figure 7 Skewness of different methods and horizons.
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volatility forecast and may not reveal misspecification at long horizons. In this
section, an econometric test is developed to determine whether the long-term
skewness implied by a set of parameter estimates is significantly different from
that in the data. It is a conditional moment test and has a well-defined asymptotic
distribution. However, because it uses overlapping data and in some cases, highly
overlapping data, it is unlikely that the asymptotic distribution is a good guide
to the finite-sample performance. Thus, Monte Carlo critical values are also com-
puted. In brief, it is found that the models cannot be rejected for misspecification
of long-term skewness.

The test is based on the difference between the third moment of data simulated
from the model with estimated parameters and the third moment of the data. For
a horizon k and estimated parameters θ̂, the process is simulated N times with
bootstrapped innovations to obtain a set of log asset prices{si

k(θ̂)}. The moment to
be tested is therefore

mk
t (θ̂) =

(
st − st−k − 1

T

T

∑
j=k
(sj − sj−k)

)3

⎡
⎣1

T

T

∑
t=k

(
st − st−k −

(
1
T

T

∑
j=k
(sj − sj−k)

))2
⎤
⎦

3/2 −
1
N

N

∑
i=1

(
si

k(θ̂)− si
k(θ̂)
)3

[
1
N

N

∑
i=1

(
si

k(θ̂)− si
k(θ̂)
)2
]3/2

(16)

The expected value of this moment should be zero if the model is correctly
specified and the sample is sufficiently large.

To test whether the average of this moment is zero, a simple outer product
of the gradient test can be used with simulated moments. This test approach was
initially used by Godfrey and Wickens (1981) and formed the core of the Berndt
et al. (1974) maximization algorithm , now called BHHH. It was nicely exposited
in Davidson and MacKinnon (1993, Chapter 13.7 and 16.8) and Engle (1984). It is
widely used to construct conditional moment tests under the assumption that the
moment condition converges uniformly to a normal mean-zero random variable
with a variance that is estimated by its long-run variance.

The test is then created by regressing a vector of 1s on the first derivative
matrix of the log likelihood function and the added sample moments.

L(θ) =
T

∑
t=1

Lt(θ), Gt(θ) ≡ ∂Lt/∂θ′, 1 = G(θ̂)c+M(θ̂)b+ resid, (17)

where M is the matrix of moment conditions from Equation (16). The test statistic
is simply the joint test that all the coefficients b = 0.

Because of the dependence between successive moment conditions and poten-
tial heteroskedasticity, this distribution theory only applies when Heteroskedas-
ticity and Autocorrelation Consistent Covariance (HAC) standard errors are used.
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Figure 8 Critical values for long-term skewness test at 2.5% in each tail.

Figure 9 T-statistics for long-term skewness test.

Even with such technology, there is a great deal of experience that suggests that the
finite-sample distribution is not well approximated by the asymptotic distribution
which is a standard normal. Thus, I will compute Monte Carlo critical values as
well as asymptotic critical values.

The test is done for one horizon k at a time. Parameters are estimated by MLE
using the full sample and then the skewness at horizon k appropriate for these
parameters is computed by simulating 10,000 sample paths of length k. The mo-
ment condition (16) can then be constructed for each data point to obtain a vector
of moments M. Equation (17) is estimated by ordinary least squares (OLS) but
the standard errors are constructed to correct for heteroskedasticity and autocor-
relation. This is done with prewhitening and then applying Newey West with a
variable bandwidth. The standard error associated with b is used to construct a
t-statistic and this is tested using either the standard normal distribution or the
Monte Carlo distribution.
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To compute the Monte Carlo critical values, 1000 replications are computed
with a sample size of 2000 and skewness computed in Equation (16) from 10,000
bootstrapped simulations. An upper and a lower 2.5% quantile are extracted and
used as alternative critical values for the t-statistic. The parameters used for this
Monte Carlo are close approximations to the data-based parameters.

The Monte Carlo critical values for the TARCH and EGARCH corresponding
to the upper and lower tails using bootstrapped simulations are rather far from the
standard normal. The critical values are given in the following table:

Thus, the critical values for TARCH models using a horizon of 10 days would
be (−2.7,2.8), while for the 500-day horizon, it would be (−0.2, 10). Clearly, the
asymptotic (−2,2) is not a very good approximation, particularly, for long horizons
where the overlap is very large. The EGARCH is more symmetrical and somewhat
closer to the asymptotic distribution at least up to 50 days.

When this test is applied for long time series on the SP500 for the five models
used in this paper for the five horizons, the t-statistics are given in Figure 9. Notice
that the largest t-statistic is for the 500 day overlap with TARCH. Its value of 5.5
exceeds any reasonable approximation to the asymptotic assumption of standard
normality, however, from Figure 8, it is clear that the finite-sample distribution
is dramatically skewed and that this value does not exceed the critical value. No
other t-statistics exceed two or exceed the Monte Carlo critical values. Thus, the
conclusion is that all these models appear to generate long-term skewness that is
consistent with the SP data.

5 LONG-TERM SKEWNESS AND DEFAULT CORRELATIONS

In a Merton style model of default, the probability of default is the probability
that the equity price will fall below a default threshold. The location of the de-
fault threshold can be estimated from the probability of default which is priced
in the market for credit default swaps. In simple models designed to measure
the frequency of defaults over a time period, it is often assumed that all firms
are identical. Consequently, all firms must have the same market beta, idiosyn-
cratic volatility, probability of default, and default threshold. The data-generating
process is simply the one factor model

ri,t = rm,t + σiεi,t. (18)

The distribution of defaults depends only on the properties of market returns and
idiosyncratic returns. When the market return is positive, there are only defaults
for companies with large negative idiosyncratic returns. When the market return is
very negative, there are defaults for all companies except the ones with very large
positive idiosyncrasies. The probability of default is the same for all companies,
but it is much more likely for some simulations than for others. This model is
developed in more detail in Berd, Engle, and Voronov (2007).
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For normal and constant volatility idiosyncracies and defaults that occur
whenever the stock price is below the default threshold at the end of the period,
the probability of default is given by

πi = π = P(ri,t < kt) = E[P(ri,t < kt|rm,t)]

= E[P(εi < (kt − rm,t)/σi|rm,t)]

= E[Φ((kt − rm,t)/σi)].

(19)

The value of k each period is chosen to satisfy Equation (19) for a set of simulations
of market returns. The default correlation is defined as the correlation between
indicators of default for any pair of companies. It is the covariance between these
indicators divided by the variance. This can be estimated using the independence
between idiosyncrasies using the following expression:

ρd
t = (P(ri,t < kt & rj,t < kt)− π2)/(π − π2)

= (E[Φ((kt − rm,t)/σ)2|rm,t]− π2)/(π − π2)

= (V[Φ((kt − rm,t)/σ)])/(π − π2).

(20)

Assuming the annual probability of default is 1%, the default frontier can be eval-
uated for different models by solving Equation (19) for k. Then the number of de-
faults calculated for any simulation. Idiosyncratic volatility is assumed to be 40%
so the average correlation of two names is 18%. In Figure 10, the number of de-
faults that occur on the 1% worst case simulation are tabulated. This simulation
corresponds to big market declines and many defaults.

In this worst case, the proportion of companies defaulting after 5 years is 40%.
This bad outcome is certainly systemic. After 1 year where the probability of de-
fault is 1%, there is a nonnegligible probability that there will be 15% defaults. If
the bad outcomes continue, this will rise to dramatic levels.

The default correlations in these simulations can also be computed and are
tabulated in Figure 11. These correlations are highest at the first year and then
gradually decline. The correlation between returns in the simulation is 18% so only
the TARCH BOOT model has default correlations greater than equity correlations.

This analysis implies that a 99% confidence interval for the number of defaults
5 years out would include something like 1/3 of the existing firms when the mean
default rate is only approximately 5%. For policy makers to reduce this systemic
risk, either the stochastic process of market volatility must be changed or the un-
conditional probability of default which is assumed to be 1% per year must be
reduced. Proposed capital requirements for financial firms could have that effect.
In reality, the default probability is endogenously chosen by firms as they select
their capital structure. A firm with less debt and more equity will have a lower
probability of default. It is therefore natural for firms with lower volatility of their
earnings and correspondingly lower equity volatility to choose more leverage to
lower the cost of capital without incurring high potential bankruptcy costs. How-
ever, if the choice of capital structure is made based on short-term volatility rather
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Figure 10 1% Worst case proportion of defaults by various models.

Figure 11 Default correlations for various models.
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than long-term volatility as argued in this paper, then in low volatility periods,
firms will systematically choose excessive leverage and higher actual bankruptcy
costs than would be optimal. Thus, an important outcome of the development
of effective long-term risk measures could be a reduction in the actual default
probabilities.

In practice, the identical firm model with independent idiosyncrasies may not
be sufficiently rich to reveal the correlation structure. Certainly both equity corre-
lations and default correlations are higher within industry than across industries.
To encompass these observations, a richer model is needed such as the Factor Dy-
namic Conditional Correlation (DCC) model described in Anticipating Correlations
by Engle (2009a) and Engle (2009c).

6 AN ECONOMIC MODEL OF ASYMMETRIC VOLATILITY

6.1 Asset Pricing

French, Schwert, and Stambaugh (1987) were the first to recognize the impact of
changes in risk premia on asset prices. If volatilities are changing and risk pre-
mia depend upon expectations of future volatility, then a rise in expected future
volatility should coincide with a drop in asset prices since the asset is less desir-
able. An important stylized fact is that volatilities and returns are very negatively
correlated. This feature was tested by FSS using simple realized volatility mea-
sures and found to be important. Subsequently, there have been many papers on
this topic including Campbell and Hentschel (1992), Smith and Whitelaw (2009),
and Bekaert and Wu (2000). While alternative theories for asymmetric volatility
based on firm leverage have received much attention including Christie (1982),
Black (1976), recently Choi and Richardson (2008), I will focus on the risk premium
story as it is particularly relevant for broad market indices where risk is natu-
rally associated with volatility and where systemic risk corresponds to big market
declines.

An economic model of risk premia can be based on a pricing kernel. Letting
mt represent the pricing kernel, the price of any asset today, St, can be expressed in
terms of its cash value tomorrow xt+1.

St = Et(mt+1xt+1). (21)

The expected return can be written as

Etrt+1 = r f
t − (1+ r f

t )Covt(rt+1, mt+1). (22)

In a one-factor model such as the Capital Asset Pricing Model (CAPM) where rm

is the single factor, the pricing kernel can be written as

mt+1 =
1

1+ r f
t

− bt(rm
t+1 − Etrm

t+1). (23)
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Expected returns can be expressed as

Etrm
t+1 = r f

t + (1+ r f
t )btVart(rm

t+1) = r f
t + δtht+1, (24)

which is the familiar Autoregressive Conditional Heteroskedasticity in Mean
(ARCH-M) model implemented in Engle, Lilien, and Robins (1987) when δ is con-
stant and Chou, Engle, and Kane (1992) when it is not.

To describe unexpected returns, a forward-looking model is required, and we
will employ the widely used Campbell and Shiller (1988) log linearization. In this
approximate identity, the difference between returns and what they were expected
to be, is decomposed into a discounted sum of surprises in expected returns and
in cash flows or dividends. Notice that even if dividends are perfectly predictable,
there will be surprises in returns through changes in risk premia. If the risk free
rate is also changing, this will be another component of innovations, however, it
can be implicitly incorporated in the cash flow innovation. For this derivation, the
risk free rate and coefficient of risk aversion b will be assumed constant.

rt+1 = Et(rt+1)− ηr,t+1 + ηd,t+1,

ηr,t+1 = (Et+1 − Et)
∞
∑

j=1
ρjrt+j+1,

ηd,t+1 = (Et+1 − Et)
∞
∑

j=0
ρjΔdt+j+1.

(25)

Substituting Equation (24) into Equation (25) yields an expression for the changes
in risk premium.

ηr,t+1 = (Et+1 − Et)δ
∞

∑
j=1

ρjht+j+1. (26)

It can be seen immediately from Equations (25) and (26) that returns will be neg-
atively correlated with the innovation in the present discounted value of future
conditional variance. To simplify this expression, I will assume that the variance
follows a general linear process.

7 GENERAL LINEAR PROCESS VARIANCE MODELS

This framework suggests a different way to write volatility models. In some cases,
this is just a restatement of the model, but it also suggests new members of the fam-
ily. The idea is to write the model in terms of the variance innovations. Consider a
model given by the following equations:

ht =
∞

∑
j=1

ϕjνt−j, Et(νt+1) = 0, Vt(rt+1) ≡ ht+1, ϕ1 ≡ 1. (27)
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For this class of models, the innovations given by νt are Martingale difference se-
quences and are measurable with respect to rt. That is, the innovations are nonlin-
ear functions of r and other information from the past.

Clearly,

(Et+1 − Et)ht+2 = νt+1,
(Et+1 − Et)ht+3 = ϕ2νt+1,
(Et+1 − Et)ht+k = ϕk−1νt+1.

For general linear variance processes, substitution in Equation (26) yields

ηr,t+1 = νt+1

[
δ

∞

∑
j=1

ρjφj

]
, (28)

rt+1 = Et(rt+1)− νt+1

[
δ

∞

∑
j=1

ρjφj

]
+ ηd

t+1. (29)

Here, we see that the innovation in variance is negatively correlated with returns.
If this innovation has substantial persistence so that volatility can be expected to
be high for a long time, then the φ parameters will be large and the correlation will
be very negative. If δ is large, indicating a high level of risk aversion, then again,
the correlation will be very negative. If cash flow innovations are small, then the
correlation will approach negative one.

In the common case where the variance process can be written as a first-order
process,

ht+1 = ω+ θht + νt, (30)

then

ϕk = θk−1, and

[
δ

∞

∑
j=1

ρj ϕj

]
= δ

[
∞

∑
j=1

ρjθ j−1

]
=

δρ

1− θρ
. (31)

This model can be estimated indirectly under several additional assumptions. As-
suming a volatility process for r, the parameters of this process and the variance
innovations can be estimated. From these parameters and an assumption about
the discount rate, the constant in square brackets can be computed. Then the series
of cash flow innovations can be identified from

ηd,t = rt − Et−1(rt) + νt

[
δ

∞

∑
j=1

ρj ϕj

]
. (32)

Defining

εt = (rt − Et−1(rt))/
√

ht, (33)

and A =

[
δ

∞

∑
j=1

ρj ϕj

]
, (34)
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then Equation (32) can be rewritten as

ηd,t√
ht
= εt +

νt√
ht

A. (35)

If εt is i.i.d. and vt/
√

ht is a function only of εt, then the cash flow volatility process
must be proportional to h. In this case, the covariance matrix of the innovations can
be expressed as

E

⎡
⎣ ε

ν/
√

h
ηd/
√

h

⎤
⎦
⎡
⎣ ε

ν/
√

h
ηd/
√

h

⎤
⎦

T

=

⎡
⎣ 1 χ Aχ+ 1

χ ψ Aψ+ χ

Aχ+ 1 Aψ+ χ A2ψ+ 2Aχ+ 1

⎤
⎦ . (36)

χ = E
(

εν/
√

h
)

, ψ = V
(

ν/
√

h
)

Of the models considered in this paper, only the Asymmetric Square Root GARCH
(ASQGARCH) satisfies the assumption that vt/

√
ht is a function only of εt. This

will be shown below.
In the case where this assumption is not satisfied, then the volatility process of

cash flow innovations will generally be more complicated. In the GARCH family
of models, the conditional variance of ηd will be the sum of a term linear in h and
a term quadratic in h. The quadratic part is from the variance of v. If the quadratic
term is small compared with the linear term, then the process will probably look
like a GARCH process in any case. Thus, it is important to determine the relative
importance of the risk premium and the cash flow terms.

Many asymmetric GARCH processes can be written as first-order autoregres-
sive variance processes, see Medahi and Renault (2004). It is the case for three
variance processes used in this paper: TARCH, NGARCH, and ASQGARCH. For
the TARCH model,

ht+2 = ω+ αr2
t+1 + γr2

t+1 Irt+1<0 + βht+1

= ω+ (α+ γ/2+ β)ht+1 + [α(r2
t+1 − ht+1) + γ(r2

t+1 Irt+1<0 − ht+1/2)]

= ω′ + θht+1 + [νt+1].

(37)

The innovation is given by the expression in square brackets. It is easy to see that
if ht+1 is factored out of the innovation term, then the remainder will be i.i.d. Con-
sequently, the variance of the variance innovation is proportional to the square of
the conditional variance.

A similar argument applies to the NGARCH model:

ht+2 = ω+ α(rt+1 − γh1/2
t+1)

2 + βht+1

= ω+ (α(1+ γ2) + β)ht+1 + [((εt+1 − γ)2 − (1+ γ2))αht+1]

= ω′ + θht+1 + [νt+1], εt = rt/
√

ht.

(38)
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Again, the variance of the innovation is proportional to the square of the variance.
The asymmetric SQGARCH or ASQGARCH model introduced in Engle and

Ishida (2002) and Engle (2002) is designed to have the variance of the variance pro-
portional to the variance as in other Affine models. This model can be expressed
in the same form

ht+2 = ω+ (α+ γ/2+ β)ht+1+[α(r2
t+1 − ht+1)+ γ(r2

t+1 Irt+1<0 − ht+1/2)]h−1/2
t+1

= ω′ + θht+1 + [νt+1]. (39)

This model is the same as the TARCH except that the innovation term is scaled by
h−1/2

t . The innovation can be written as

νt+1/
√

ht+1 = [α(ε
2
t+1 − 1) + γ(ε2

t+1 Iεt+1<0 − 1/2)]. (40)

Clearly, vt/
√

ht is a function only of εt and will have a time invariant variance.
If gamma is much bigger than alpha, then the asymmetry will be very important.
There is no guarantee that this model will always produce a positive variance since
when the variance gets small, the innovation becomes bigger than in the TARCH
and can lead to a negative variance. Various computational tricks can eliminate
this problem although these all introduce nonlinearities that make expectations
impossible to evaluate analytically.

It is apparent that the same approach can be applied to the other models
to create affine volatility models such as the Square Root Non Linear GARCH
(SQNGARCH).

ht+2 = ω+ (α(1+ γ2) + β)ht+1 + [((εt+1 − γ)2 − (1+ γ2))αht+1]h−1/2
t+1

= ω′ + θht+1 + [νt+1], εt = rt/
√

ht.
(41)

7.1 Empirical Estimates

The ASQGARCH model estimated for the S&P500 from 1990 through Novem-
ber 2010 gives the following parameter estimates and t-statistics. Returns are in
percent. An intercept in the mean was insignificant.

rt+1 = 0.0358ht+1
(3.46)

+
√

ht+1εt+1,

ht+1 = 0.0224
(12.53)

+ 0.976ht+
(454.97)

[
0.0049
(1.13)

(r2
t − ht) + 0.102

(15.9)
(r2

t Irt<0 − ht/2)

]
h−1/2

t .
(42)

The variance innovations in square brackets have a mean approximately zero with
a standard deviation of 0.20 which is considerably smaller than the daily standard
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deviation of returns measured in percent which over this period is 1.17. However,
the correlation between returns and the innovation in variance is −0.65 which is
very negative. This is a consequence of the strong asymmetry of the variance in-
novation which follows from gamma being much bigger than alpha.

The size of the coefficient A can be constructed from these estimates and a dis-
count rate. The persistence parameter is about 0.976 which is quite high although
considerably lower than often found in GARCH estimates. The coefficient of risk
aversion is estimated to be 0.0358 which is quite similar to that estimated in Bali
and Engle (2010) Table II which must be divided by 100 to account for the use
of percentage returns. Using an estimate of the discount rate as 0.97 annually or
0.9998 daily gives A = 0.913. With this parameter, estimates of the cash flow inno-
vation can be computed. It has a standard deviation of 1.06 and a correlation with
the variance innovation of−0.50 when weighted by conditional variance. The vari-
ance of the cash flow innovation is more than 20 times greater than the variance of
risk premium innovation. Thus, there are many daily news events that move re-
turns beyond the information on risk. The estimate of the covariance matrix from
Equation (36) is

1
T

T

∑
t=1

⎡
⎣ εt

νt/
√

ht

ηd,t/
√

ht

⎤
⎦
⎡
⎣ εt

νt/
√

ht
ηd,t/
√

ht

⎤
⎦

T

=

⎡
⎣ 1 −0.119 .888
−0.119 .036 −.086

.888 −.086 .809

⎤
⎦ . (43)

The implication of these estimates is that the volatility innovations are a relatively
small component of return innovations but are highly negatively correlated with
returns and with cash flow dividends. Economic events that give positive news
about cash flows are likely to give negative news about volatility. Once again, high
volatility occurs in the same state as low earnings.

Other volatility processes will have variance innovations that are also nega-
tively correlated with returns. Calculating these correlations over different sam-
ple periods and comparing them with log changes in VIX gives Figure 12. The

Figure 12 Correlations between returns and volatility innovations.
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correlations are quite stable over time. For the VIX itself the correlation is −0.7
while for some of the volatility models it is as high as −0.8. The weighted correla-
tions are similar.

8 HEDGING LONG-TERM RISKS IN THE ICAPM

The analysis presented thus far shows that the one factor model naturally
implies asymmetric volatility in the factor. This asymmetric volatility process
means that long horizon returns will have important negative skewness. This neg-
ative skewness in the factor means that the probability of a large sustained de-
cline in asset prices is substantial. Such a tail event may represent systemic
risk.

Naturally, investors will seek to hedge against this and other types of long-
term risk. Financial market instability, business cycle downturns, rising volatil-
ity, short-term rates, and inflation are all events that investors fear. Even risks in
the distant future such as global overheating and insolvency of social security
or medicare can influence asset prices. This fear induces additional risk premia
into the financial landscape. Portfolios that provide hedges against these long-
term risks become desirable investments, not because they are expected to out-
perform, but because they are expected to outperform in the event of concern.
These might be called defensive investments. I will develop a pricing and volatil-
ity relationship for these hedge assets and show how it differs from conventional
assets.

Merton (1973) has suggested that changes in the investment opportunity
set can be modeled with additional state variables and consequently additional
factors. These factors are hedge portfolios that are designed to perform well in a
particular state. Some examples help to clarify the issues. Investors often invest
in gold to hedge both inflation and depression. Investments in strong sovereign
debt and currency are considered to be hedges against financial crisis and global
recession. Investments in volatility as an asset class are natural hedges against
any recession that leads to rising volatilities. Similarly, Credit Default Swap
(CDS) provide simple hedges against deteriorating credit quality and systemic
risks. Any of these hedge portfolios could be shorted. In this case, the shorted
portfolios will have higher risk premiums as they increase the risk in bad
times.

Consider the ICAPM of Merton where there are a set of state variables and a
set of k factors that can be used to hedge these long-term risks. The pricing kernel
has the form

mt = at + b1,t f1,t + · · ·+ bk,t fk,t. (44)

The factor reflecting aggregate wealth portfolio will have a coefficient that is neg-
ative. I show next that hedge portfolios will have coefficients b that are positive,
at least in the leading cases.
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The pricing relation is

1= Et(mt+1(1+ rt+1)),

Et(rt+1) = r f
t − (1+ r f

t )(covt(mt+1, rt+1))

= r f
t − (1+ r f

t )
k
∑

i=1
bi,tβi,tvart( fi,t+1),

βi,t = covt( fi,t+1, rt+1)/vart( fi,t+1).

(45)

If the bs and betas are constant over time, then the risk premia of all assets will
depend only on the conditional variances of the factors.

Consider now the pricing of the second factor in a two-factor model. The
expected return is given by

Et( f2,t+1) = r f
t − (1+ r f

t )(b1,tcovt( f1,t+1, f2,t+1) + b2,tvart( f2,t+1)), (46)

where b1 < 0. In a one-factor world, this would be a conventional asset priced by
setting b2 = 0. The risk premium will be proportional to the covariance with the
first factor. If this asset provides a desirable hedge, then it should have a lower
expected return and a higher price than if b2 = 0 . This can only happen if b2 >

0. Thus, the pricing kernel for a two-factor model will have a positive coefficient
for the second asset. The risk premium associated with the variance of this asset is
negative. Of course, a short position in this asset will have a conventional positive
risk premium for taking the risk associated with the second factor as well as the
covariance with the first factor.

With multiple risks and factors, the same analysis can be applied to the last
factor. If it hedges some event that is of concern to investors that is not already
hedged, then it should have a risk premium that is based in part on its covariance
with other factors, and then is reduced by its own variance.

Equation (46) provides an econometric setting to examine the process of an
asset that can be used as a hedge. An innovation to the conditional variance of the
hedge asset will reduce its risk premium and increase its price, holding everything
else equal. That is, when the risk or variance of the hedge portfolio is forecast to
increase, the hedge becomes more valuable and its price increases. Consequently,
increases in variance will be correlated with positive returns rather than negative
returns. This volatility is asymmetric but of the opposite sign and might be called
reverse asymmetric volatility. Now, positive returns have a bigger effect on future
volatility than negative returns.

This can be derived more formally using the Campbell Shiller log lineariza-
tion as in Equation (25) where discounted variance innovations provide a model
of unexpected returns. The important implication of this analysis is that the asym-
metric volatility process of a hedge portfolio should have the opposite sign as that
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of a conventional asset. The long-term skewness of hedge portfolios will therefore
be positive rather than negative.

This argument is only strictly correct when the covariance between factors is
held constant. Normally, when a variance for one asset is forecast to increase, then
the covariance between this asset, and a second asset should increase unless the
correlation falls or the variance of the second asset falls. A positive shock to covari-
ances will increase the risk premium and reduce the price movement thereby off-
setting some of the direct effect. Thus, the empirical ability to see this asymmetry
is limited by the natural offsetting covariance effects. Furthermore, the volatility
innovations in the first asset will influence the covariance in a way that is simply
noise in a univariate model.

To examine this empirical measure, I look at estimates for almost 150
assets which are followed every day in VLAB. This can easily be seen at
www.vlab.stern.nyu.edu. The assets include equity indices, international equity
indices, individual names, sector indices, corporate bond prices, treasuries, com-
modities, and volatilities, as well as currencies. The names of the series are given
in Table 1. These are sorted by the estimated value of Gamma, the asymmetric
volatility coefficient in the TARCH model. When this coefficient is negative, then
positive returns predict higher volatility and when it is positive, negative returns
predict higher volatility.

From the argument given above, hedge portfolios should have negative
gamma. From the list, it is clear that many of the assets naturally thought to be
hedge assets do indeed have negative gamma. This is true of eleven out of thir-
teen volatility series. These series are constructed like the Market Volatility Index
(VIX) but on a variety of assets including international equities and commodities.
In each case, these assets will be expected to increase dramatically in value in an-
other financial crisis. The next highest asset on the list is GOLD. It has a negative
gamma.

US Treasuries appear to be a hedge, whether at the short or long end of the
maturity. The swap rate variables are approximately converted to returns by using
the negative of the log change in yield. In this way, these look very similar to the
bond indices published by Barclays at the short, intermediate or long end of the
term structure.

Many exchange rates have negative gamma. As these are measured as dollars
per foreign currency, these should increase in a crisis if the foreign currency is
expected to weaken in a future crisis. We see that relative to the Kenyan, Japanese,
Thai, Russian, and Swiss currencies, the volatility is asymmetric. Relative to many
others, the exchange rate has the conventional positive sign. For most of these
other exchange rates, the coefficient is close to zero.

The large positive coefficients are typically broad-based equity indices, both
US and global indices. This is consistent with the economic observation that in-
dices that approximate the global wealth portfolio must have a positive gamma so
that returns and volatilities are negatively correlated.
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The evidence that these assets are priced as Merton hedge portfolios suggests
that important parts of the investment community do indeed respond to long-run
risks by taking positions in hedge portfolios. The high cost of volatility derivatives
is further evidence of the value of these contracts in protecting against various
forms of tail risk.

Table 1 Asymmetric volatility models from VLAB November 29, 2010.

Name Gamma

AEX volatility index return series −0.14403
CBOE volatility index (OLD) return series −0.14172
SMI volatility index return series −0.1354
CBOE NASDAQ-100 volatility index return series −0.13041
CBOE volatility index return series −0.126
CBOE DJIA volatility index return series −0.12559
FTSE 100 volatility index return series −0.1003
iShares gold return series −0.04837
US Dollar to Kenyan Shilling return series −0.04168
Kospi volatility index return series −0.0404
DAX volatility index return series −0.03757
5Y interest rate swap return series −0.03625
iShares Barclays 1–3 year return series −0.03567
10Y interest rate swap return series −0.03548
2Y interest rate swap return series −0.03479
US Dollar to Japanese Yen return series −0.03309
CBOE crude oil volatility index return series −0.02868
US Dollar to Thai Baht return series −0.02313
iShares Barclays 10–20 year return series −0.01594
US Dollar to Swiss Franc return series −0.01416
Barclays US Agg. Government return series −0.00958
US Dollar to Russian Rouble return series −0.00932
BEL 20 volatility index return series −0.00741
iShares Barclays short return series −0.00553
NYSE Euronext return series −0.00422
Barclays US Agg. Credit AA return series 0.002092
CAC40 volatility index return series 0.003436
US Dollar index return series 0.003664
US Dollar to British Pound return series 0.00737
iShares Silver return series 0.008139
US Dollar to EURO return series 0.008159
US Dollar to Canadian Dollar return series 0.008498
iShares S&P GSCI commodity-indexed trust return series 0.014338
Bovespa return series 0.014887
Intel return series 0.017776

(continued)
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Table 1 (continued)

Name Gamma

US Dollar to Australian Dollar return series 0.020536
Hewlett-Packard return series 0.021733
Barclays US Agg. credit BAA return series 0.02187
US Dollar to Singapore dollar return series 0.02245
MSCI Canada return series 0.023255
Alcoa return series 0.028223
Wal Mart stores return series 0.028549
Caterpillar return series 0.031276
AT&T return series 0.033125
Du Pont return series 0.033618
Charles Schwab return series 0.034797
McDonalds return series 0.03503
US Dollar to South Korean Won return series 0.036069
Blackrock return series 0.037161
CBOE Gold volatility index return series 0.039308
Bank Of America return series 0.040501
ML HY Cash Pay C All return series 0.042471
General Motors return series 0.042776
Boeing return series 0.043467
CME Group return series 0.047192
Franklin Resources return series 0.04838
Walt Disney return series 0.048408
General Electric return series 0.048818
MBIA return series 0.048849
Citigroup return series 0.049284
Procter & Gamble return series 0.049897
iShares Cohen & Steers Realty Majors return series 0.050613
US Bancorp return series 0.052038
Exxon Mobil return series 0.052686
iShares Barclays MBS return series 0.052709
MSCI FTSE/Xinhua China 25 return series 0.054102
Coca Cola return series 0.055971
Goldman Sachs return series 0.060912
MSCI Taiwan return series 0.062269
American Express return series 0.063519
Materials SPDR return series 0.064714
Korea composite stock index return series 0.064814
Wells Fargo return series 0.064971
Merck & Co. return series 0.065279
iShares Dow Jones U.S. Real Estate return series 0.065537
MSCI Japan return series 0.065731
SPDR S&P Metals & Mining return series 0.066303
Budapest Stock Exchange Index return series 0.066486

(continued)
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Table 1 (continued)

Name Gamma

MSCI Italy return series 0.067246
MasterCard return series 0.067339
Energy SPDR return series 0.06862
JP Morgan Chase return series 0.068975
Johnson & Johnson return series 0.070134
Home Depot return series 0.070361
MSCI UK return series 0.073132
iShares iBoxx $ High Yield Corporate return series 0.07341
Fannie Mae return series 0.073971
E-Trade return series 0.074877
Technology SPDR return series 0.076638
Utilities SPDR return series 0.077278
MSCI Sweden return series 0.078147
IBM return series 0.078657
NASDAQ Composite return series 0.079284
iShares S&P Global Energy return series 0.080881
American Internation Group return series 0.081977
Hang Seng return series 0.082658
MSCI Spain return series 0.083193
Consumer Staples SPDR return series 0.083752
Russell 2000 return series 0.085299
MSCI Germany return series 0.08642
CIT Group return series 0.086607
Consumer Discretionary SPDR return series 0.089509
MSCI Australia return series 0.090098
MSCI Switzerland return series 0.090125
US Dollar to Indian Rupee return series 0.090441
US Dollar to Indian Rupee return series 0.090441
MSCI Netherlands return series 0.091247
Morgan Stanley return series 0.091704
MSCI France return series 0.091707
MSCI Emerging Markets return series 0.094782
FTSE 100 return series 0.097009
MSCI Belgium return series 0.098846
MSCI Hong Kong return series 0.099802
CAC 40 return series 0.103081
MSCI Brazil return series 0.103465
MSCI World return series 0.103797
Industrials SPDR return series 0.104001
Prudential Financial return series 0.104334
Financials SPDR return series 0.104509
Dow Jones Industrials return series 0.105162
SPDR S&P Oil & Gas Exp. & Prod. return series 0.105526

(continued)
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Table 1 (continued)

Name Gamma

Wilshire Small Cap 250 return series 0.10599
DAX 30 return series 0.106108
iShares iBoxx $ Investment Grade Corporate return series 0.106886
MSCI Singapore return series 0.107279
MSCI EAFE return series 0.108903
S&P 500 Composite return series 0.110646
iShares S&P New York AMT-Free Municipal return series 0.111022
MetLife return series 0.113888
MSCI BRIC return series 0.113948
Healthcare SPDR return series 0.115262
United Technologies return series 0.11589
MSCI FTSE China (HK Listed) return series 0.12127
MSCI Mexico return series 0.140785
ML HY Cash Pay B All return series 0.147277
MIB 30 return series 0.191248

9 Conclusions

This paper introduces the idea that short- and long-run risk can be separately
measured and used to achieve investment goals. Failure to pay attention to long-
term risk is a potential explanation for the financial crisis of 2007–2009 where low
short term risk allowed financial institutions to load themselves with leverage and
illiquid assets such as subprime Collateralized Debt Obligation (CDOs). Recogniz-
ing that time-varying volatility models are able to measure how fast risk is likely
to evolve, the term structure of risk can be estimated by simulation. VaR, ES, and
tail parameters can all be estimated. Because long-term skewness is more negative
than short-term skewness for typical volatility models, this becomes a key feature
of long-term risk since negative skewness makes a major decline in asset values
more likely. In a Merton style model of defaults, it is shown that the negative long-
term skewness can give rise to massive defaults and high correlations of defaults
reinforcing the possibility of another episode of systemic risk.

Although long-term negative skewness is a property of asymmetric volatility
models, there is no test for the strength of this effect. In this paper, such a test is de-
veloped as a simulated method of moments test. From the asymptotic distribution
and a Monte Carlo estimate of the distribution, it is found that all the asymmetric
models are consistent with the long-term skewness in the data. It does not seem
that this will distinguish between models.

The economic underpinning of the asymmetric volatility model is developed
following French Schwert and Stambaugh and simple asset pricing theory. The
model has implications for the proportion of return volatility that is due to changes
in risk and the proportion due to changes in other factors such as cash flow. Affine
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style models in discrete time provide a useful parameterization although this is
not necessarily the only way to express this relation.

Finally, economic agents that seek to hedge their long-term risk will naturally
look for Merton hedges that will outperform in bad states of nature. From standard
asset pricing theory, it is possible to develop testable implications about the volatil-
ity of such hedge portfolios. Remarkably, hedge portfolios should have asymmet-
ric volatility of the opposite sign from ordinary assets. From examining close to 150
volatility models in VLAB, it is discovered that the only ones with reverse asym-
metric volatility are volatility derivatives themselves, treasury securities both long
and short maturities, some exchange rates particularly relative to weak countries
and gold. These are all assets likely to be priced as hedge portfolios. There are
caveats in this procedure that argue for more research to investigate the power of
this observation.
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