
Heuristic Algorithms: Local Search

 1

Local Search

Local search is an iterative algorithm that moves from one solution S to another S’ according to
some neighbourhood structure.

Local search procedure usually consists of the following steps.

1. Initialisation. Choose an initial schedule S to be the current solution and compute the
value of the objective function F(S).

2. Neighbour Generation. Select a neighbour S’ of the current solution S and compute F(S’).

3. Acceptance Test. Test whether to accept the move from S to S’. If the move is accepted, then
S’ replaces S as the current solution; otherwise S is retained as the current
solution.

4. Termination Test. Test whether the algorithm should terminate. If it terminates, output the
best solution generated; otherwise, return to the neighbour generation step.

We consider four local search algorithms: Iterative Improvement, Threshold Accepting, Simulated
Annealing, and Tabu Search. For all of them, steps 1, 2, and 4 are the same while
step 3 is different.

We assume that a schedule is represented as a permutation of job numbers (J1, J2, … , Jn). This can
always be done for a single machine processing system or for permutation flow shop; for other
models more complicate structures are used.

In Step 1, a starting solution can be obtained by one of the constructive heuristics described in the
previous lectures or it can be specified by a random job permutation. If local search procedure is
applied several times, then it is reasonable to use random initial schedules (explain why).

To generate a neighbour S’ in Step 2, a neighbourhood structure should be specified beforehand.
Often the following types of neighbourhoods are considered:
 transpose neighbourhood in which two jobs occupying adjacent positions in the sequence are

interchanged: (1, 2, 3, 4, 5, 6, 7) → (1, 3, 2, 4, 5, 6, 7);
 swap neighbourhood in which two arbitrary jobs are interchanged:

(1, 2, 3, 4, 5, 6, 7) → (1, 6, 3, 4, 5, 2, 7);
 insert neighbourhood in which one job is removed from its current position and inserted

elsewhere: (1, 2, 3, 4, 5, 6, 7) → (1, 3, 4, 5, 6, 2, 7).
Neighbours can be generated randomly, systematically, or by some combination of the two
approaches.

In Step 3, the acceptance rule is usually based on values F(S) and F(S’) of the objective function for
schedules S and S’. In some algorithms only moves to ‘better’ schedules are accepted (schedule S’
is better than S if F(S’)<F(S)); in others it may be allowed to move to ‘worse’ schedules. Sometimes
“wait and see” approach is adopted.

The algorithm terminates in Step 4 if the computation time exceeds the prespecified limit or after
completing the prespecified number of iterations.

In what follows we specify Step 3 “Acceptance Test” for each type of the local search algorithm.

Heuristic Algorithms: Local Search

 2

1 Iterative Improvement

Iterative Improvement allows only strict improvement in the objective function value.
 It accepts a new schedule S’ only if F(S’)<F(S), where S is the current schedule.

Often instead of accepting the first neighbour with the value of the objective function smaller than
F(S) for the current schedule S, the algorithm constructs all neighbours (or a given number of
neighbours) and selects the best one.

The algorithm stops when for all neighbours S’ of schedule S, F(S’)≥F(S), i.e., when a local
optimum is obtained. A better schedule may be found if the algorithm is applied repeatedly starting
with different randomly generated initial solutions.

In-class exercise 1 (from “ Scheduling: Theory, Algorithms and Systems” by M. Pinedo)

Consider the following instance of problem 1||ΣwjTj (single machine scheduling problem of
minimising total weighted tardiness).

Jobs pj dj wj

1 10 4 14
2 10 2 12
3 13 1 1
4 4 12 12

Apply Iterative Improvement algorithm starting with initial schedule S1=(4,3,2,1). Define the
neighbourhood as all schedules that can be obtained from a current schedule through adjacent
pairwise interchanges. In each iteration consider all neighbours of the current schedule.

Current schedule, ΣwjTj Neighbour, ΣwjTj Accepted?

Heuristic Algorithms: Local Search

 3

2 Threshold Accepting

Threshold Accepting allows to continue the local search even if a local optimum has been obtained.
 It accepts a new schedule S’ if F(S’)<F(S)+α, where α>0 is a threshold value.
Usually α is relatively large at the beginning and it becomes smaller later on.

3 Simulated Annealing

Simulated Annealing also allows to continue the local search even if a local optimum has been
obtained. It uses the Probabilistic Acceptance Test, which can be described as follows.

Determine ∆= F(S’) - F(S).

 If ∆≤0, then a move to schedule S’ is always accepted.
 If ∆>0, then a move to schedule S’ is accepted with probability e-∆/T, where T is a parameter

called the temperature, which changes during the course of the algorithm.
Usually T is large in the beginning and then it decreases until it is close to 0 at the final stages.
Different “ cooling schemes” can be applied. Often Tk=ak, where Tk is the “ temperature” at
iteration k and 0<a<1.

Both algorithms, Threshold Accepting and Simulated Annealing, can get back to the solutions
already visited and this is their main disadvantage. A simple way to avoid cycling is to store visited
solutions in a list called a tabu list. A new solution can be accepted if it is not contained in the list.

4 Tabu Search

Tabu Search algorithm allows accepting a “ worse” schedule S’ (as Threshold Accepting and
Simulated Annealing). Its acceptance test is based on a tabu list. Tabu list stores attributes of the
previous few moves. It has a fixed number of entries (usually between 5 and 9) and it is updated
each time a new schedule S’ is accepted:
 the reverse transformation is entered at the top of the tabu list to avoid returning to the same

solution (to avoid returning to a local optimum);
 all other entries are pushed down one position;
 the bottom entry is deleted.

The following Deterministic Acceptance Test is usually implemented.

Determine ∆= F(S’) - F(S).
 If ∆<0 and S’ is “ non-tabu” , then a move to S’ is always accepted.
 If ∆<0 and S’ is “ tabu” , then a move to S’ may be accepted for a “ promising” schedule S’

(if F(S’) is less than the objective function value for any other solution obtained before).
 If ∆≥0 and S’ is “ tabu” , then a move to S’ is always rejected.
 If ∆≥0 and S’ is “ non-tabu” , then a “ wait and see” approach is adopted: S’ remains as a

candidate while the search continues for a neighbour which can be accepted immediately. If no
such neighbour is found, a move to the best candidate S’ is made.

Heuristic Algorithms: Local Search

 4

In-class exercise 2 (from “ Scheduling: Theory, Algorithms and Systems” by M. Pinedo)
Consider the same instance of problem 1||ΣwjTj. Apply Tabu Search starting with initial schedule
S1=(4,2,3,1). Define the neighbourhood as the schedules that can be obtained from a current
schedule through adjacent pairwise interchanges. Accept the first non-tabu neighbour with ∆<0, if
one exists; otherwise consider all neighbours of the current schedule. Assume that tabu-list is a list
of pairs of jobs (j, k) that were swapped within the last two moves and cannot be swapped again.

Tabu List Current schedule, ΣwjTj Neighbour, ΣwjTj Accepted?

Conclusions

1. Local search algorithms are very generic.

2. They have been applied successfully to many industrial problems.

3. Performance of local search algorithms depends on construction of neighbourhood.

4. A method that exploits the special structure of a particular problem is usually faster (if one
exists).

Heuristic Algorithms: Local Search

 5

