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Parallel Machine Problems 
 

1. Minimising Cmax  
 
 
For the problem with parallel machines, the following two lower bounds of the makespan are 
often used.  
 
Job-based bound: },,,max{  re       whe, 21max npppppC �=≥        (1) 

 (makespan cannot be smaller than the time required to complete  
  one job) 

Machine-based bound:  ∑ =
≥

n

j j /mpC
1max       (2) 

   (makespan cannot be smaller than the average machine load)   
 
 
Both lower bounds hold for any schedule, preemptive or non-preemptive, optimal or non-optimal.  

 

Observe that (1) and (2) can be replaced by  

{ }.,max
1max ∑ =

≥
n

j j /mppC      (3)  

 

1.1 Preemptive case (problem P|pmtn|Cmax) 

 

For the preemptive problem P|pmtn|Cmax, lower bound (3) can be achieved, i.e., for the makespan 
of the optimal schedule condition (3) holds as equality:  

 

{ }∑ =
=

n

j j
OPT /mpp, C

1max max  

 

The algorithm below constructs such a schedule.  
 

Wrap-around algorithm: 

1. Calculate the optimal makespan value { }∑ =
=

n

j j
OPT /mpp, C

1max max . 

2. Construct a single-machine nonpreemptive schedule by assigning n jobs to a single machine 
in an arbitrary order starting with the longest job.  

3. Cut this single-machine schedule into m parts of length OPTCmax  (the last part may be shorter).  

- Take the processing sequence of the first part as the schedule for machine M1. 

- Take the processing sequence of the second part as the schedule for machine M2 

- Continue with the remaining machines in a similar way.  
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Example 1: ∑ =
=

n

j j
OPT mpC

1max /  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Example 2: pC OPT =max  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

M3 

M2 

M1 

Single machine 
schedule 1 2 3 4 5 6 8 7 9 

Parallel 
machine 
schedule 

6 8 7 9 

3 4 5  

M3 

M2 

M1 

Single machine 
schedule 1 2 3 4 6 5 7 

Parallel 
machine 
schedule 

1 

2 3 4 6 5 

6 7 

6 

OPTCmax

OPTCmax

1 2 3 

Jobs 3 and 6 are processed with preemption.  

The resulting schedule is feasible, i.e., no one job 
is processed by two machines at a time.  
 

Job 6 is processed with preemption.  

The resulting schedule is feasible, i.e., no one job is 
processed by two machines at a time.  
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1.2 Non-preemptive case (problem P| |Cmax ) 

 

The nonpreemptive problem P||Cmax is NP-hard. Hence it is unlikely that the optimal schedule can 
be found in polynomial time. 

The following simple algorithm finds an approximate solution in O(n) time.  

 

Algorithm List Scheduling 

- place jobs into a list (in an arbitrary order)  

- schedule the first available job from the list of unscheduled jobs whenever a machine 
becomes idle.  

The structure of schedule SLS can be illustrated by the following figure.  

 

 

 

 

 

 

 

 

 
 
 

 
We show that for the schedule SLS constructed by list scheduling the following inequality holds:  

.2
max

max ≤
OPT

LS

C

C
 

Let job k be the last job in the list and t be its start time.  
No machine is idle before the start time of job k. Due to this fact  

.
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∑
=
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jpmt  

Since k is the last job in the schedule,  
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Due to lower bound (2),  ,
1

max
1

OPT
n

j
j Cp

m
≤∑

=

 

and due to lower bound (1),  OPT
k Cpp max≤≤ .  

 

We conclude that OPTLS CC maxmax 2≤ , i.e., list scheduling is a 2-approximation algorithm.  

 

For P|| Cmax, list scheduling is a 2-approximation algorithm.  
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In fact a stronger result can be proved for list scheduling: the algorithm has a worst-case ratio of 
2-1/m as shown by Graham in 1965 in the first paper on the worst-case analysis of scheduling 
heuristics.  

 

 

 
 
 

2. Minimising ΣΣΣΣCj and ΣΣΣΣwjCj 
 
 
 
We demonstrated earlier that SPT rule finds an optimal schedule for a single machine problem 
1||ΣCj. It can be proved that it is also optimal for the parallel machine problem P||ΣCj.  
 
As far as ΣwjCj objective is concerned, problem P||ΣwjCj is NP-hard.  
WSPT-rule turns out to be a good approximation algorithm. It can be proved that its worst-case 
ratio is 1.21 (i.e., WSPT is 1.21-approximation algorithm for P||ΣwjCj).  
 

If in the List Scheduling Algorithm the job list is sorted in order of nonincreasing processing times, 
then this algorithm is known as LPT (longest processing time first).  
It can be proved, that for the LPT-algorithm, the worst-case ratio is 4/3 – 1/(3m). 

NP-hard 

1 || ΣCj 

Polynomially  
solvable SPT-rule 

P || ΣCj 

P ||ΣwjCj WSPT-rule 
(1.21-approximation) 

SPT-rule 


