Single Machine Problems: Branch and Bound Algorithm

Branch and Bound algorithm (B&B) is an exact method for finding an optimal solution to an NPhard problem. It is an enumerative technique that can be applied to a wide class of combinatorial optimisation problems.

To describe the B&B algorithm, consider problem $1 \parallel \Sigma T_j$. This problem is NP-hard, i.e., it is unlikely that there can be developed a polynomial-time algorithm for finding an optimal schedule.

The input data for the instance with n=4 jobs is given by the following table:

Jobs	1	2	3	4
p_j	12	8	15	9
d_j	16	26	25	27

A schedule corresponds to an assignment of the jobs to the four positions in the job sequence.

- <u>Initialisation</u>: To generate a schedule we start with no job sequenced and indicate this by (*,*,*,*). Here "*" in the job sequence indicates that no job has yet been assigned to that position.
- <u>Step 1</u>: To construct a schedule starting from the first position, we move from node (*, *, *, *) to one of the four possible nodes (1, *, *, *); (2, *, *, *); (3, *, *, *); (4, *, *, *).
- <u>Step 2</u>: To assign the second job in the sequence, we branch from the each of these four nodes to three possibilities: branching from (1,*,*,*) gives (1,2,*,*), (1,3,*,*), and (1,4,*,*); branching from (2,*,*,*) gives three possibilities (2,1,*,*), (2,3,*,*), and (2,4,*,*), etc.

<u>Step 3</u>: Assigning the job to be processed in the third position immediately fixes the last job.

This process is represented by a branching tree. Each node of a tree corresponds to a partial schedule with several jobs assigned to the first positions and the remaining jobs unassigned. To avoid full enumeration of all job permutations, we calculate in each step the <u>Lower Bound</u> (LB) of the value of the objective function for each partial schedule.

Calculation of the Lower Bound is implemented in a different way for different problems.

Consider problem $1 \|\Sigma T_j$ and a partial schedule obtained at Step k after k jobs have been assigned to the first k positions.

- For the jobs assigned to the first k positions, their actual tardiness is determined as

$$T_{j_u} = \max\{C_{j_u} - d_{j_u}, 0\}$$

- For any unscheduled job j_v , its tardiness T_{j_v} cannot be less than $\max\{C_{j_v} - d, 0\}$, where **d** is the maximum due date among the unscheduled jobs:

$$T_{j_v} \ge \max\{C_{j_v} - d, 0\}.$$

Consider an artificial problem where the unscheduled jobs have a common due date

$$\boldsymbol{d} = \max \{ d_{j_{k+1}}, d_{j_{k+1}}, \dots, d_{j_n} \}.$$

The minimum total tardiness with respect to common due date d can be found by sequencing the unscheduled jobs in the SPT order¹. Thus completion times C_{j_v} of the unscheduled jobs and their tardiness T_{j_v} can be found by applying the SPT-rule.

$$LB = \underbrace{\left(T_{j_1} + T_{j_2} + \dots + T_{j_k}\right)}_{\text{scheduled}} + \underbrace{\left(T_{j_{k+1}} + T_{j_{k+2}} + \dots + T_{j_n}\right)}_{\text{unscheduled}}$$

Sequencing the unscheduled jobs in the SPT order and replacing their original due dates d_{j_v} by a large artificial due date **d** is done temporarily in order to determine the Lower Bound for the current partial schedule.

¹ We use here an auxiliary result: an optimal schedule for problem $1|d_j = d | \Sigma T_j$ with equal due dates can be obtained by SPT-rule. A task to prove this rule will be included in Coursework 2.

The resulting branch-and-bound tree is represented in the following figure. An example of calculating the lower bounds is given below.

Calculating Lower Bounds

In the partial schedule (1, *, *, *), tardiness of job 1 is

 $T_1 = \max\{C_1 - d_1, 0\} = \max\{12 - 16, 0\} = 0.$

Total tardiness of the remaining jobs 2, 3, and 4 is not less than the minimum total tardiness calculated with respect to the large common due date $d=\max\{d_2, d_3, d_4\}=27$. In accordance with Exercise 1, the jobs 2, 3, 4 should be sequenced in the SPT-order:

	1		2	4	ŀ		3						
				4									
0				24				40)	44			

 $T_2 + T_3 + T_4 \ge \max\{C_2 - d, 0\} + \max\{C_3 - d, 0\} + \max\{C_4 - d, 0\} =$

 $=\max\{20-27,0\} + \max\{44-27,0\} + \max\{29-27,0\} = 0+17+2 = 19.$

It follows that $T_1+T_2+T_3+T_4 \ge 0+19$ and this is the lower bound *LB* for the partial schedule (1, *, *, *).

Advantages of Branch & Bound algorithm:

— Finds an optimal solution (if the problem is of limited size and enumeration can be done in reasonable time).

Disadvantages of Branch & Bound algorithm:

— Extremely time-consuming: the number of nodes in a branching tree can be too large.

The algorithm finds the first complete schedule and then tries to improve it. Often developing the "promising" branches may lead to a huge number of offsprings that finally may not give an improvement. Thus the size of the tree may grow exponentially without improving the best solution obtained.