
Computational Complexity 
Approximation Algorithms 

 1 

1. Computational Complexity 
 

Computational complexity theory provides a mathematical framework that is able to explain why some 
problems are easier to solve than the others. We briefly sketch some of the main points of this theory. 
Detailed exposition of this topic can be found in the books by Garey & Johnson (1979) and 
Papadimitriou (1994).  

Most of scheduling problems are optimisation problems, i.e., we look for a schedule that minimises a 
certain objective function. An algorithm is a step-by-step procedure for solving a computational 
problem. For a given input, it generates the correct output after a finite number of steps. The time 
complexity or the running time of an algorithm expresses the total number of elementary operations, 
such as additions, multiplications and comparisons, for each possible problem instance as a function of 
the size of the instance. 

The input size of a typical scheduling problem is bounded by the number of jobs n, the number of 
machines m and the number of bits to represent the largest integer (the processing time, the due date 
etc.) An algorithm is said to be polynomial or a polynomial-time algorithm, if its running time is 
bounded by a polynomial in input size. For scheduling problems, typical values of the running time are 
e.g., O(n²) and O(nm). Here we write O(n²) using the big O-symbol to stress that the number of 
elementary computations of the algorithm grows at the same rate as the function Cn², where C is a 
constant. 

Many scheduling algorithms contain the sorting of n jobs, which is known to require at most O(n logn) 
time. 

Polynomial algorithms are sometimes called efficient or simply good. The class of all polynomially 
solvable problems is called class PPPP. 

Another class of optimisation problems is known as NPNPNPNP-hard problems. For such problems, no 
polynomial-time algorithms are known and it is generally believed that these problems cannot be 
solved in polynomial time.  

The following is widely accepted: If a problem is NP-hard (NP -complete) it is unlikely that it admits a 
polynomial-time algorithm, and should be treated by other methods.  
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2. Approaches to Scheduling Problems 
 
Given a scheduling problem we first need to determine its complexity status. This is done either by 
designing a polynomial-time algorithm for its solution or by proving that the problem is NP-hard. 
There is a web site http://www.mathematik.uni-osnabrueck.de/research/OR/class/ maintained by 
P.Brucker, S. Knust (University of Osnabrück, Germany) that contains a fairly complete complexity 
classification of scheduling problems. You can check the complexity status of the problem using LiSA 
by choosing <Extras<Problem Classification from the main menu of the software.  
     
Many scheduling problems turn out to be NP-hard. As a consequence, it is unlikely that those problems 
can be solved efficiently, i.e. by polynomial time algorithms.  
 
Once we know that our problem is NP-hard, we need to determine whether we want its exact solution 
or may be happy with an approximate solution. It is unlikely that an exact solution can be found by a 
polynomial-time algorithm. An exact solution can be found by various methods of reduced 
enumeration, typically by a branch-and-bound algorithm. Alternatively, the problem can be formulated 
as a mathematical programming problem. In any case, for problems of practical interest only small-size 
instances can be handled by exact methods. An exact solution to a job shop problem with 10 jobs and 
10 machines remained unknown for more than 25 years. 
 

In order to find a “good” solution within an acceptable amount of time, two types of algorithms can be 
developed:  

- approximation algorithms;  
- heuristic algorithms.  

 
An algorithm is called an approximation algorithm if it is possible to establish analytically how close 
the generated solution is to the optimum (either in the worst-case or on average). The performance of a 
heuristic algorithm is usually analysed experimentally, through a number of runs using either 
generated instances or known benchmark instances. Heuristic algorithms can be very simple but still 
effective (dispatching rules). Most of modern heuristics are based on various ideas of local search 
(neighbourhood search, tabu search, simulated annealing, genetic algorithms, etc.). 
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Many scheduling problems turn out to be NP-hard. As a consequence, it is unlikely that those problems 
can be solved efficiently, i.e. by polynomial time algorithms.  

In order to find a “good” solution within an acceptable amount of time, two types of algorithms can be 
developed:  

- approximation algorithms;  
- heuristic algorithms.  

Approximation algorithms produce solutions in polynomial time, but for the price of loss of 
optimality. The solutions found are guaranteed to be within a fixed percentage of the actual optimum. 
Heuristic algorithms produce feasible solutions, which are not guaranteed to be close to optimum.  
 

“Goodness” of approximation algorithm can be estimated by the ratio 
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where F(SA) is the 

value of the objective function for the solution SA obtained by the approximation algorithm and F(SOPT) 
is the value of the objective function for the optimal solution.  
 

 

 
3. Approximation algorithm for problem 1|rj|ΣΣΣΣCj 

Problem 1|rj|ΣCj  of scheduling n jobs available at their release times rj is NP-hard if preemption is not 
allowed and the objective is to minimise total completion time. This means that it is unlikely that there 
can be developed a fast exact algorithm to find an optimal schedule. Intuitively, the following two 
heuristics should work well:  

- the earliest completion time rule:  each time select an unscheduled job with the minimum 
completion time (similar to SPT rule for problem 1|rj|ΣCj );  

- the earliest starting time rule:  each time select an unscheduled job with the minimum release date 
(processing times are ignored).  

These two rules are examples of heuristic algorithms, as for them no accuracy bounds are known.  
 

We describe an approximation algorithm for 1|rj|ΣCj based on the optimal solution of problem 
1|rj,Pmtn|ΣCj. The latter problem can be solved efficiently by the Shortest Remaining Processing Time 
Rule (see the handout on single-machine problems).  
 
Algorithm ‘Convert-Preemptive-Schedule’ (modification of SRPT)  

1. Solve the preemptive problem 1|rj,Pmtn|ΣCj using SRPT-rule.  

2. Sequence the jobs nonpreemptively in the order that they complete in the solution of the 
preemptive problem 1|rj,Pmtn|ΣCj.   

We define a ρ-approximation algorithm to be an algorithm that runs in polynomial time and 
delivers a solution of value at most ρ times the optimum for any instance of the problem, i.e., 
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We show that for the schedule SA constructed by algorithm ‘Convert-Preemptive-Schedule’ the 
following inequality holds:  
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where  Cj(SA) is the completion time of job j in SA,  
Cj(SOPT)  is the completion time of job j in an optimal schedule SOPT.  

Let us renumber the jobs in the order they are completed in schedule SA. Then the structure of schedule 
SA can be illustrated as follows:   
 
 
 
 
 
 
 
The completion time of each job j in schedule SA is  
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where u is the nearest job that precedes job j and starts exactly at its release date rj (in the example 
above, u is one of the jobs 1, 4, or 6).  
 
The following two inequalities hold for the preemptive schedule SPmtn: 
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Substituting these two inequalities in (1), we obtain:  

 
( ) ( ).2 PmtnjAj SCSC ≤  

 
Finally, since SPmtn is the optimal preemptive schedule, SOPT is the optimal non-preemptive schedule,  

( ) ( )∑∑ ≤ .OPTjPmtnj SCSC  
 
The latter inequality provides the desired ratio guarantee of 2.  
  

 

 

For problem 1|rj|ΣCj, algorithm ‘Convert-Preemptive-Schedule’ is a 2-approximation algorithm.  
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