Basic Scheduling Algorithms for Single Machine Problems: Processing Jobs With Preemption

Consider a problem of scheduling jobs with preemption. In this problem, processing of any job can be interrupted and resumed later, the total processing time of all parts of job j being equal to p_j .

The following exercise demonstrates that **if all jobs are released at the same time** $(r_j=0)$, there is no advantage to process the jobs with preemption. In other words, for problem $1|pmtn| \Sigma C_j$ there exists an optimal schedule without preemption.

An instance of problem $1|pmtn| \Sigma C_j$ with n=5 jobs is given by job processing times $p_1 = 3$; $p_2 = 13$; $p_3 = 4$; $p_4 = 2$; $p_5 = 5$.

Schedule *S* is represented by the Gantt chart below.

Construct schedule S' without preemption and without increasing completion times of all jobs.

//3	1	5	2	3	1	5	2	 4	2	

Consider the general problem $1|pmtn| \Sigma C_j$ with *n* jobs and arbitrary processing times. To show that there exists an optimal nonpreemptive schedule describe a transformation that modifies an arbitrary preemptive schedule *S* into a nonpreemptive schedule *S'* without increasing the completion times of all jobs.

.....

Minimising total completion time with nonzero release dates and preemption allowed: $1|r_j, pmtn|\Sigma C_j$

Consider $1|r_i, pmtn|\Sigma C_i$.

Shortest Remaining Processing Time (SRPT) rule: each time that a job is completed, or at the next release date, the job to be processed next has the smallest remaining processing time among the available jobs.

Example:

Job	r_i	p_i
1	0	13
2	3	6
$\frac{2}{3}$	14	8
4	18	3
5	22 25	5
6	25	3
7	30	4
8	33	1

Theorem 2.

For problem $1|r_j$, *Pmtn*| ΣC_j , the SRPT rule is optimal.

Proof (pairwise interchange argument)

Consider a schedule in which available job *i* with the shortest remaining processing time is not being processed at time *t*, and instead available job *k* is being processed. Let p'_i and p'_k denote the remaining processing times for jobs *i* and *k* after time *t*, so $p'_i < p'_k$.

In total $p_i' + p_k'$ is spent on jobs *i* and *k* after time *t*. We assume that $C_i < C_k$.

Interchange:

- 1) Take the first p_i^{\prime} units of time that were devoted to either of jobs *i* and *k* after time *t*, and use them instead to process job *i* to completion.
- 2) Take the remaining p_k units of time that were spent processing *i* and *k* after time *t*, and use them to schedule job *k*.

We have obtained a 'better' schedule *S*':

$$C_i' < C_i$$
$$C_k' = C_k$$

Since in the new schedule all jobs other than i and k have the same the completion times as before, we obtain:

$$\sum_{j=1}^{n} C_{j}^{'} - \sum_{j=1}^{n} C_{j} = \left(C_{i}^{'} + C_{k}^{'}\right) - \left(C_{i} + C_{k}\right) < 0.$$

This contradicts the optimality of schedule S.