RoBOTICS RESEARCH INSTITUTE '#
SECTION INFORMATION TECHNOLOGY

Scheduling Problems and Solutions

Uwe Schwiegelshohn

IRF-IT Dortmund University
Summer Term 2006

Omﬁ Textbook

B Scheduling — Theory, Algorithms, and Systems
Michael Pinedo
2nd edition, 2002
Prentice-Hall Inc.
Pearson Education

m The lecture is based on this textbook.

m These slides are an extract from this book. They are to be used only
for this lecture and as a complement to the book.

Oﬁﬁ Scheduling Problem

Constraints

Tasks Time
» Resources
(Jobs) (Machines)
— e
Obijective(s)
Areas:

m Manufacturing and production
m Transportations and distribution
m Information - processing

Omﬁ Example 1 Paper Bag Factory

m different types of paper bags
m 3 production stages
e printing of the logo
e gluing of the side
e sewing of one or both ends
m several machines for each stage
e differences in speed and function
e processing speed and processing quantity
e setup time for a change of the bag type
m due time and late penalty

® minimization of late penalties, setup times

O Example 2
ﬁﬁﬁ Gate Assignments at Airport

different types of planes (size)
different types of gates (size, location)
flight schedule

e randomness (weather, take off policy)

service time at gate

e deplaning of passengers

e service of airplane

e boarding of passengers
minimization of work for airline personnel

minimization of airplane delay

Omﬁ Example 3 Tasks in a CPU

m different applications
e unknown processing time
e known distributions (average, variance)
e priority level
m multitasking environment
e preemption
® minimization of the sum of expected weighted completion times

Information Flow Diagram in a -
Manufacturing System

Production planning, Orders, demand forecasts

master scheduling

——

\ 4

Capacity Quantities,

status due dates
\ 4

Material requirements,
planning, —> Material requirements
capacity planning

\ 4

Scheduling Shop orders,
constraints {__ _______________| - release dates_ _ _ ___

I A A
| _ |
| Scheduling !
' and '
' > rescheduling i Detailed scheduling
| Schedule X
| performance l Schedule '
| |
X > Dispatching X
1 1

Shop A 4

status Shopfloor

management
A
Data collection Job loading
Shopfloor 7

Information Flow Diagram in a Service =
System

Database Status (history) »| Forecasting
Data Forecasts

\ 4 W

Scheduling 4 Prices rules Yield

management
A
Accept/
reject Place order,
(conditions) make reservations
A 4
Customer

Omﬁ Job Properties

p;: processing time of job j on machine i
(p;: identical processing time of job j on all machines)
r: release date of job j (earliest starting time)
d;: due date of job j (completion of job j after d; results in a late penalty)
d; deadline (d must be met)
w;: weight of job j (indicates the importance of the job)

Omﬁ Machine Environment ’#

1 :single machine

Pm: m identical machines in parallel

Qm: m machines in parallel with different speeds
Rm: m unrelated machines in parallel

Fm : flow shop with m machines in series
e each job must be processed on each machine using the same route.
e queues between the machines
FIFO queues, see also permutation flow shop

FFc: flexible flow shop with ¢ stages in series and several
identical machines at each stage,
one job needs processing on only one (arbitrary) machine
at each stage.

10

Omﬁ Machine Environment '#

Jm : job show with m machines with a separate
predetermined route for each job

A machine may be visited more than once by a job.
This is called recirculation.

FJc: flexible job shop with ¢ stages and several identical
machines at each stage, see FF_

Om : Open shop with m machines
Each job must be processed on each machine.

11

Omﬁ Restrictions and Constraints '#

m release dates, see also job properties
B sequence dependent setup times
= Siik: setup time between job j and job k on machine i
% (Sj: identical setup times for all machines)
» (S : startup for job j)
® (Sjo: cleanup for job j)
m preemption (prmp)

=% The processing of a job can be interrupted and later resumed (on
the same or another machine).

m precedence constraints (prec)
= Certain jobs must be completed before another job can be started.
e representation as a directed acyclic graph (DAG)

12

Omﬁ Restrictions and Constraints ’#

m machine breakdowns (brkdwn)

=% machines are not continuously available: For instance, m(t) identical
parallel machines are available at time {.

m machine eligibility restrictions (M;)
= M; denotes the set of parallel machines that can process job j (for P
and Q).
m permutation (prmu), see Fn,
m blocking (block)
=% A completed job cannot move from one machine to the next due to
limited buffer space in the queue. Therefore, it blocks the previous
machine (F,, FF_)
B no — wait (nwt)
=% A job is not allowed to wait between two successive executions on
different machines (F,, FF,).
m recirculation (recirc)
13

Omﬁ Objective Functions

m Completion time of job j: C;

m Lateness of job j: L= C;—d
=% The lateness may be positive or negative.

m Tardiness: T;= max (L;, 0)
-

1, ifC;>d;
m Number of late jobs: U;= <

0, otherwise
.

14

Omﬁ Objective Functions

m Makespan: Cp o =max (Cq,...,C,)
= completion time of the last job in the system

m Maximum lateness: Lo =max (Ls,..., L)

15

Omﬁ Objective Functions

Total weighted completion time: w; C;
Total weighted flow time: (Zw;(Cj—r1;)) = Z w;Cj— X w;T,
a_l

const.
Discounted total weighted completion time:
> Zwj(1-e7C)) 0<r<1
Total weighted tardiness: X w; T;
Weighted number of tardy jobs: w; U;
Regular objective functions:
=% non decreasing in C4,...,C,
= Earliness: E;= max (-L;, 0)
e non increasing in C;
YE+XT; Xw Ej+Zw Tj — not regular obj. functions

16

Omﬁ Description of a Scheduling Problem &

\

—

machine environment

Examples:

Paper bag factory
Gate assignment
Tasks ina CPU
Traveling Salesman

a|B]|y

v

constraints,
processing,
characteristics

FF3 | rj,sjk| ZWj Tj
P | 1 M| 2w Tj
I rj, prmp | £ w; G;
I|Sjk | Cmax

objective (to be
minimized)

17

Omﬁ Classes of Schedules

m Nondelay (greedy) schedule

=» No machine is kept idle while a task is waiting for processing.

An optimal schedule need not be nondelay!

Example: P2 | prec | C,,ax

jobs | 1123|456 |7|38

10

o |8|7|7/2/3[2]2]|8

15

18

O Precedence Constraints
m Original Schedule

jobs 112 (345|678 910
Pi 8|7 |7 |12 |3|2)|2)|8]| 8|15

= job completed

0 10 20 30 19

O Precedence Constraints
mﬁﬁ Reduced Processing Time

jobs 112 (345|678 910
Pi 71616121 117 (7 |14

= job completed

The processing time of each job is
reduced by 1 unit.

0 10 20 30 20

O Precedence Constraints
mﬁﬁ Use of 3 Machines

jobs 112 (345|678 910
Pi 8|7 |7 |12 |3|2)|2)|8]| 8|15

= job completed

3 machines are used instead of 2 with
the original processing times

Oﬁﬁﬁ Active Schedule g#

It is not possible to construct another schedule by changing
the order of processing on the machines and having at
least one task finishing earlier without any task finishing

|ater.

There is at least one optimal and active schedule for J_ ||y if
the objective function is regular.

Example :

Consider a job shop with three machines and two jobs.

m Job 1 needs 1 time unit on machine 1 and 3 time units on machine 2.
m Job 2 needs 2 time units on machine 3 and 3 time units on machine 2.
m Both jobs have to be processed last on machine 2.

22

Omﬁ Example of an Active Schedule '#

Machine 1| 1

Machine 2 2 1

Machine 3 2

v

It is clear that this schedule is active as reversing the sequence of the two
jobs on machine 2 postpones the processing of job 2. However, the
schedule is neither nondelay nor optimal. Machine 2 remains idle until
time 2 while there is a job available for processing at time 1.

23

Omﬁ Semi — active Schedule '#

No task can be completed earlier without changing the order of
processing on any one of the machines.

Example:

Consider again a schedule with three machines and two jobs. The
routing of the two jobs is the same as in the previous example.

m The processing times of job 1 on machines 1 and 2 are both equal

to 1.
m The processing times of job 2 on machines 2 and 3 are both equal

to 2.

24

Omﬁ Example of a Semi — active Schedule ’#

Machine 1| 1

Machine 2 2 1

Machine 3 2

Consider the schedule under which job 2 is processed on machine 2
before job 1. This implies that job 2 starts its processing on machine
2 at time 2 and job 1 starts its processing on machine 2 at time 4.
This schedule is semi-active. However, it is not active as job 1 can be
processed on machine 2 without delaying the processing of job 2 on
machine 2.

25

O ﬁ Venn Diagram of Classes of Schedules E#

for Job Shops

Optimal Schedules

Semi-active

xNondelay Active

A Venn diagramm of the three classes of nonpreemptive schedules;
the nondelay schedules, the active schedules, and the semi-active schedules

26

Oﬁﬁﬁ Complexity Preliminaries

m T(n)=0(f(n)) if T(n)<c-f(n)holds for some ¢>0 and all n>ng
m Example 1500 + 100n2 + 5n3=0(n?3)

m Input size of a simple scheduling problem
n log,(max pj)

T

number of jobs maximal processing time
In binary encoding

27

O
mﬁ Mergesort

\/ \/ \/ \/
. _~ . _~

1,4, 6_8\, » 7.9
1,3,4,6,6,7,8,9
n input values at most n log, n comparison steps

time complexity of mergesort: O(n log n)

28

Scheduling Problems

O G Complexity Hierarchies of Deterministic ’#

Some problems are special cases of other problems:
Notation: o, | B1| v oc (reduces to) o, | B2 72

Examples:

1 ||ZCjOC1 ||Zw,-Cjoch||ijCjoch|prec|Zw,-Cj

Complex reduction cases:
o | B|Lmax ca| B2 U
o | B|Lmax ca| B X T,

Variation of d;and logarithmic search

29

i

Machine Environment

Qm

FJc

-

30

O | - .
mﬁ Processing Restrictions and Constraints &

§ Sik prmp | [prec brkdwn | | M; | [block || nwt || recrc

31

i

Objective Functions

2Wj Uj

ZUj

2 T
2 G, al
=G, Lmax
Cmax

-

32

Omﬁ Time Complexity of Algorithms ’#

m Easy (polynomial time complexity):
There is an algorithm that optimally solves the problem with time
complexity O((n log(max p;))¥) for some fixed k.

m NP-hard in the ordinary sense
(pseudo polynomial time complexity):
The problem cannot be optimally solved by an algorithm with
polynomial time complexity but with an algorithm of time complexity
O((n max py)¥).

m NP-hard in the strong sense:
The problem cannot be optimally solved by an algorithm with pseudo
polynomial complexity.

33

i

Problem Classification

Deterministic scheduling problems

polynomial
time solution

NP — hard

ordinary sense

\ 4

pseudo
polynomial solution

‘prﬁfd/ strongly

NP-hard

34

Omﬁ Partition

Given positive integers a,,..., a,and b = %2:131 ,

do there exist two disjoint subsets S; and S, such that
2.8;=b
J€S;

for i=1,27?

Partition is NP-hard in the ordinary sense.

35

Omﬁ 3-Partition

Given positive integers a,,..., ay, b with

E<aj<9 , i=1,..,3t
and
3t
Y a=tb
=1
do there exist t pairwise disjoint three element subsets S, c {1,... , 3t}
such that
2.a;=b fori=1,..., t?
j€S;

3-Partition is strongly NP-hard.

36

Omﬁ Proof of NP-Hardness '#

m A scheduling problem is NP-hard in the ordinary sense if
= partition (or a similar problem) can be reduced to this problem with a
polynomial time algorithm and
= there is an algorithm with pseudo polynomial time complexity that solves
the scheduling problem.

m A scheduling problem is strongly NP-hard if
= 3-partition (or a similar problem) can be reduced to this problem with a
polynomial time algorithm.

37

Omﬁ Complexity of Makespan Problems &

38

O Complexity of Maximum Lateness
mﬁ Problems

-
-
-
-
——
-
-
e
-
-
-
-

Pm ” Lmax 1 | rJ | Lmax ’I 1 | rj ’ prmp | I—max

A Vi 4

Hard -7 1 ” Lmax 1 | prmp | L max

39

Omﬁ Total Weighted Completion Time &

1 || £ w; C;: Schedule the jobs in Smith order : 0
J

The Weighted Shortest Processing Time first (WSPT) rule is optimal for 1
|~ w; G

Proof by contradiction and localization:

If the WSPT rule is violated then it is violated by a pair of neighboring task
h and k.

40

Om ﬁ Total Weighted Completion Time L A ’

N h k S
Si: Z2w;Cj= ...+ Wh(t+ph) + Wi(t + pn + pk)
t
Q k h S

So: 2 wCj= ...+ w (t+pk) + wi(t + px + pn)

Difference between both schedules S1und So:
Wk Ph— Wh Pk > 0 (improvement by exchange)

W W
k> h

The complexity is dominated by sorting ==> O (n log(n)) <= o p
Kk h

41

O : : .

mﬁ Total Weighted Completion Time A
Use of precedence constraints: 1| prec| £ w; C;
Only independent chains are allowed at first!
Chain of jobs 1, ... , k

|* satisfies

= MmMax |
1<I<k
2P
=)
|* determines the 5-factor of the chain 1, ... , k

42

O G Total Weighted Completion Time with ’#

Chains

Whenever the machine is available, select among the remaining chains
the one with the highest 5-factor.

Schedule all jobs from this chain without interruption until the job that
determines the d&-factor.

Proof concept
There is an optimal schedule that processes
all jobs 1, ..., |* in succession +

Pairwise interchange of chains

43

O Example: Total Weighted Completion
m Time with Chains

Consider the following two chains:
1—2 —3 —4

and
5— 6 —7
The weights and processing times of the jobs are given in the following
table.
jobs 1 2 3 4 3) 6 7
W, 18 12 17 18
Pi 6 6 8 10

44

O Example: Total Weighted Completion
ﬁﬁﬁ Time with Chains

m Jd-factor of first chain (6+18)/(3+6)=2—94 —Job 2

m S-factor of second chain (8+17)/(4+8):§<§ —Job 6
= Jobs 1 and 2 are scheduled first. 12 9

m o-factor of remaining part of first chain 1—62<%_’ —Job 3
=» Jobs 5 and 6 are scheduled next.

m W 18 12, job 3is scheduled next.

p, 10 6

- %:%% — Job 7 is scheduled next and finally job 4
4

45

Om ﬁ Other Total Completion Time Problems '#

m 1| prec|Zw;C;is strongly NP hard for arbitrary
precedence constraints.

m 1]|r,prmp | £ w;Cjis strongly NP hard.
% The WSPT (remaining processing time) rule is not optimal.

Example: Select another job that can be completed before the release
date of the next job.

m 1]|r,prmp | ZC; is easy.

m 1]|r|XCis strongly NP hard.

m 1] Zw(1--eT¢)can be solved optimally with the Weighted Discounted
Shortest Processing Time first (WDSPT) rule:

W, - e

1-e ™

46

Oﬁﬁﬁ Maximum Cost

m General problem: 1 | prec | hmax
= h;(t): nondecreasing cost function
® hmax = max (h, (C4), ..., hn (Cy))

m Backward dynamic programming algorithm
=» makespan Cmax = X pj
=» J: set of all jobs already scheduled (backwards) in
[Cmax - Z pj’ Cmax]
jed
» Jce={1, ..., n}\ J: set of jobs still to be scheduled

» J'c J°: set jobs that can be scheduled under consideration of
precedence constraints.

47

m Step1

m Step?2

m Step 3

Algorithm:
Minimizing Maximum Cost

SetJ=0, letde={1, ..., n} and J’ be the set of all jobs
with no successors.

Let j*e J' be such that

RPN

Add j* to J.
Delete j* from J°.

Modify J° to represent the new set of schedulable jobs.

If Jc= & then STOP otherwise go to Step 2.

This algorithm yields an optimal schedule for 1 | prec | hmax.

48

O ﬁ Minimizing Maximum Cost: ’#

Proof of Optimality

m Assumption: The optimal schedule S,,; and the schedule S of the
previous algorithm are identical at positions k+1,... , n

m At position k with completion time t, there is job j** in S, and job j* with
hj=(t) = hp(t) in S.
» Job j* is at position k' <kin S,

m Create schedule S’ by removing job j* in S, and putting it at position k.
= h;(C;) does not increase for all jobs {1, ..., n} \ {{*}.

» hj(t) < hj=(t) = hmax(S,,;) holds due to the algorithm.

m Therefore, schedule S’ is optimal @s hmax(S’)<hmax(S,) holds.
=% An optimal schedule and schedule S are identical at positions k, k+1, ..., n

49

hJ(CJ) A

Minimizing Maximum Cost:
Proof of Optimality

—— —— Cj*,Cj**

50

O G Minimizing Maximum Cost:

Example
jobs 1 2 3
Pij 2 3 5
hj(Cj) 1 +Cj 1.2 Cj 10

B Chax=2+3+5=10

m h3(10) =10 <h4(10) =11 < hy(10) =12
=» Job 3 is scheduled last.

] h2(10 — p3) = h2(5) =6 = h1(5)
% Optimal schedules 1,2,3 and 2,1,3

51

O .
m Maximum Lateness

m 1 || Lmaxis a special case of 1 | prec | hmax.
» h; = Cj— dj— Earliest Due Date first

m 1|r|Lmax is strongly NP complete.

Proof:
Reduction of 3-Partition to 1 | rj | Lmax

integers a4, ..., as, b 3t
_ - b b
% n =4t—-1jobs —<a <— Za-:t~b
4 2 = :
=jb+(j-1) pi=1, dj=jb +]j, Vi=1,..,t-1
=0, Pj = @j_t+1, di=tb+(t-1), Vj=t,.., At— 1

52

O .
m Maximum Lateness

Lmax =0 if every job je{1,..., t — 1} can be processed from r; to rj + p; =
d; and all other jobs can be partitioned over t intervals of length b.
= 3 — Partition has a solution.

r1 d1 r do rs ds rt2 dit2 r 1 d t1

0 b b+1 2b+1 2b+2 3b+2 3b+3 tb+t—1

1| rj | Lmax is strongly NP — hard.

53

Omﬁ Optimal Solution for 1 | rj | Lmax

Optimal solution for 1 | rj | Lmax: Branch and bound method

=» Tree with n+1 levels
| Level O: 1 root node
| Level 1: n nodes:
A specific job scheduled at the first position of
the schedule.
m Level 2 n(n-1) nodes:
from each node of level 1 there are n — 1

edges to nodes of level 2:
a second specific job scheduled at the second

position of the schedule.

% n!/(n-k)! nodes at level k:
each node specifies the first k positions of the schedule.

54

Omﬁ Optimal Solution for 1 | rj | Lmax ’#

Assumption: I, 2 Illli]n (max(t,;) +p;)

J: jobs that are not scheduled at the father node of level k — 1
t: makespan at the father node of level k — 1

Job jx need not be considered at a node of level k with this specific father
at level k — 1.

Finding bounds:

If there is a better schedule than the one generated by a branch then the
branch can be ignored.

1|1, prmp | Lmax can be solved by the

preemptive Earliest Due Date (EDD) first rule.
= This produces a nondelay schedule.
=% The resulting schedule is optimal if it is nonpreemptive.

95

i

Branch and Bound Applied to
Minimizing Maximum Lateness

jobs 1 2 3 4
P; 4 2 6 3
I 0 1 3 9)
d; 8 12 11 10
m Levell (1,?,7,7?) (2,7,7,7) (3,7,7,7) (4,7,7,7)

= Disregard (3, ?, ?, ?)and (4, ?, ?, ?) as job 2 can be completed at
r; and r4 at the latest.
m Lower bound for node (1, ?, ?, ?):

f—1—3—14 3——2-{ =5
0 4 5 10 15 17
m Lower bound for node (2, ?, ?, ?):
9P —>< 1 >« 4 >« 3 :I I—max =7

0 1 3 7 12 18 56

O Branch and Bound Applied to
ﬁﬁﬁ Minimizing Maximum Lateness

m Lower bound for node (1, 2, ?, ?):
» 1,2, 3, 4 (honpreemptive, Lnax = 6)
= Disregard (2, ?, ?, ?)

m Lower bound for node (1, 3, ?, ?):
» 1, 3, 4, 2 (nonpreemptive, Lnax = 9)
= Disregard (1, 2, ?, ?)

m Lower bound for node (1, 4, ?, ?):
% 1,4, 3, 2 (honpreemptive, Limax = 5)

optimal

—

optimal

A similar approach can be used for 1 | rj, prec | Lmax.
=» The additional precedence constraints may lead to less nodes in the

branch and bound tree.

g

Y

Oﬁﬁﬁ Number of Tardy Jobs: 1 || £ U '#

m The jobs are partitioned into 2 sets.
set A: all jobs that meet their due dates
=% These jobs are scheduled according to the EDD rule.

set B: all jobs that do not meet their due dates
=% These jobs are not scheduled!

m The problem is solved with a forward algorithm.
J: Jobs that are already scheduled
J9: Jobs that have been considered and are assigned to set B
J¢: Jobs that are not yet considered

58

gt
m Step1

m Step 2

m Step 3

m Step4

Algorithm for Solving 1 || £ U,

SetJ=0,J4=,and Jc={1, ..., n}.

Let j* denote the job that satisfies d ;. = min (d;)
Add j* to J. jel®
Delete j* from J°.

Go to Step 3.

If Z P; < d, then go to Step 4,
jed
otherwise
let k* denote the job which satisfies P = max (P;)
Delete k* from J. g
Add k* to Jd.

If Jc = & then STOP, otherwise go to Step 2.

59

M 1 || £ Uj: Proof of Optimality '#

The computational complexity is determined by sorting O(n-log(n)).

We assume that all jobs are ordered by their due dates.
» di<dx< ... <dj
Jk is asubset of jobs {1, ..., k} such that
(I) it has the maximum number N of jobs in {1, ... ,k} completed by their
due dates,

(II) of all sets with Nk jobs in {1, ... ,k} completed by their due dates Jy is
the set with the smallest total processing time.

®» J, corresponds to an optimal schedule.

60

M 1 || £ Uj: Proof of Optimality '#

Proof by induction

The claim is correct for k=1.
% We assume that it is correct for an arbitrary k.

1. Job k+1 is added to set Jx and it is completed by its due date.
® Jk+1 = Jk U {k+1} and [Jk+1 [= Nkt1=N,,,.

2. Job k+1 is added to set Jkx and it is not completed on time.
=% The job with the longest processing time is deleted

Nk+1 = Nk

The total processing time of Ji is not increased.

No other subset of {1, ... ,k+1} can have Nx on-time completions and a
smaller processing time.

Yy 3 3

61

(ﬁﬁ 1|| £ Uj: Example

jobs 1 2 3 4 3

P; 7 8 4 6 6
di 9 17 18 19 21

m Job 1 fits: Ji = {1}

m Job 2 fits: J>={1, 2}

m Job3doesnotfit: Jz={1,3}

m Job 4 fits: Ja={1, 3, 4}

m Job5doesnotfit: Js={3,4, 5}

% schedule order 3, 4,5, (1, 2) 2 Uj=2

11| £ wjU; is NP-hard in the ordinary sense.
= This is even true if all due dates are the same: 1 |d=d| X w;Uj
=» Then the problem is equivalent to the knapsack problem.

62

Cﬁﬁ 11| 2 w;U;: Example

m Heuristic approach: Jobs are ordered by the WSPT rule (w; / p).

> w,U,(WSPT)
> w,U,(OPT)

=» The ratio may be very large.

m Example: WSPT: 1,2,3 ZwU;=89
OPT: 2,3,1 ZwU;=12

jobs 1 2 3
P; 11 9 90
Wi 12 9 89
di 100 100 100

63

Omﬁ Total Tardiness ’#

1 || £ T;: NP hard in the ordinary sense.
% There is a pseudo polynomial time algorithm to solve the problem.

Properties of the solution:

1. If py< px and d; < dk holds then there exists an optimal sequence in
which job j is scheduled before job k.

» This is an Elimination criterion or Dominance result.
A large number of sequences can be disregarded.

= New precedence constraints are introduced.
— The problem becomes easier.

64

Omﬁ Total Tardiness '#

2 problem instances with processing times pyq, ..., pn

First instance: dq, ..., dn
C'k: latest possible completion time of job k in an optimal
sequence (S)

Second instance:
d1, ceey dk-1 , max{dk,C’k} dk+1, ceey dn

S”: an optimal sequence
Ci": completion time of job j in sequence S”

2. Any sequence that is optimal for the second instance is optimal for
the first instance as well.

65

Omﬁ Total Tardiness '#

Assumption: di<...<dnand px = max (p1, ..., Pn)
% kth smallest due date has the largest processing time.

3. Thereis aninteger 9,0 < 6 <n -k such that there is an optimal
sequence S in which job k is preceded by all other jobs j with j < k+3
and followed by all jobs j

with j > k+9.

% An optimal sequence consists of

1. jobs 1, ..., k-1, k+1, ..., kK+0 in some order
2. jobk

3. jobs k+ 6+1, ..., nin some order

The completion time of job k is given by C,(3)=) p, .

j<k+d

66

Omﬁ Minimizing Total Tardiness ’#

m J(j, I, k): all jobs in the set {j, ..., I} with a processing time < pk but job k
is not in J(j, I, k).

m V(J(, |, k), t) is the total tardiness of J(j, I, k) in an optimal sequence
that starts at time t.

Algorithm: Minimizing Total Tardiness
Initial conditions: V(@,1) =0
V({|}’ t) = MaX (01 t+ Pj _dj)

Recursive relation:
V(J(j, k), t) = min (V(J(},k'+8,k"),t) + max(0,C,.(6) - d,.) + V(J(k'+d + 1,1,k"),C,.(3)))

where k' is such that p,. = max(p,|j'e J(j,.k))

Optimal value function: V({1, ..., n},0)
67

Oﬁ?ﬁ Minimizing Total Tardiness

m At most O(n®) subsets J(j, |, k) and X p; points in t
% O(n*X pj) recursive equations

m Each recursion takes O(n) time
= Running time O(n*X p;)

I

polynomial in n pseudo polynomial

Algorithm PTAS Minimizing Total Tardiness

68

O G Minimizing Total Tardiness

Example
jobs 1 2 3 4 3
o 121 79 147 83 130
d, 260 266 266 336 337

m k=3 (largest processingtime) = 0<6<2=5-3

L

V(J(1, 3, 3), 0) + 81 + V(J(4, 5, 3), 347), &
= V({1,2, .., 5} 0)=min {V(Jm, 4, 3), 0) +164 + V(J(5, 5, 3), 430), &
1,5, 3), 0 5

0
1
2

V(J(1, 5, 3), 0) + 294 + (&, 560),

m V(J(1,3,3),0)=0 forsequences 1,2 and 2, 1

m V4,5, 3),347) =347 +83 — 336 +347 + 83 +130 — 337 = 317
for sequence 4, 5

69

O Minimizing Total Tardiness
mﬁﬁ Example

m V(J(1,4,3),0)=0 forsequences1,2,4and 2, 1,4
m V(J(5, 5, 3),430) =430 + 130 — 337 =223
m V(J(1,5,3),0)=76 forsequences1,2,4,5and?2,1,4,5

(0+81+317 |
% V{1,..,5,0)=min < 0+ 164 +223 %=370
|76 +294 +0

J

1,2,4,5,3and 2, 1, 4, 5, 3 are optimal sequences.

70

Oﬁﬁ Total Weighted Tardiness

m 1| Z wTjis strongly NP complete.
=» Proof by reduction of 3 — Partition

® Dominance result
If there are two jobs j and k with d; < dk, p; < pk and w; > wy,
then there is an optimal sequence in which job j appears before job k.

m The Minimizing Total Tardiness algorithm can solve this problem if
w; < wi holds for all jobs j and k with p; > px.

71

O Total Tardiness #

An Approximation Scheme

For NP — hard problems, it is frequently interesting to find in polynomial
time a (approximate) solution that is close to optimal.

Fully Polynomial Time Approximation Scheme Afor 1 || Z T;:

ZTJ.(A) (1+ e)z T,(OPT)

J

IN

N
optimal schedule

The running time is bounded by a polynomial (fixed degree) in
nand1/¢.

72

An Approximation Scheme

O Total Tardiness #
i ﬁ ﬁ v’

a) N jobs can be scheduled with 0 total tardiness iff (if and only if) the
EDD schedule has 0 total tardiness.
% T __ (EDD) < Z T,(OPT) < Z T,(EDD) <n-T
T

maximum tardiness of any job in the EDD schedule

(EDD)

max

73

O Total Tardiness
ﬁﬁﬁ An Approximation Scheme

by V(J,t): Minimum total tardiness of job subset J assuming processing
starts at t.

=» There is a time t* such that
V(J, 1)=0 for t<t* and
V(J, t)>0 for t>t*
= VUJ,t"+05)>56 for6>0
» The pseudo polynomial algorithm is used to compute V(J, t) for

max{0,t*} <t<n-T__ (EDD)

% Running time bound O(n - Thax(EDD))

74

An Approximation Scheme

O Total Tardiness #

c) Rescalep';= _pj/KJ and d';=d; /K with some factor K.

S is the optimal sequence for rescaled problem.

2. Ti*(S) is the total tardiness of sequence S for processing times
K-p'i< p; and due dates d;.

2. Tj(S) is the total tardiness of sequence S for p;j< K-(p'j + 1) and d,.

(n +1)

>3 T(S) <Y T(OPT) <Y T,(S) <> T'(8) +K ..

Y T(S) -3 T,(OPT) <K- n(n +1)

Select K = —2% _.T (EDD)

nn +1) ™

-> 3 T(S)- > T(OPT)<¢-T,, . (EDD)

75

i

PTAS Minimizing Total Tardiness

Algorithm: PTAS Minimizing Total Tardiness

m Step1

m Step 2

m Step 3

Apply EDD and determine Tmax.

If Tmax = 0, then X T; = 0 and EDD is optimal; STOP.

Otherwise set

K:(2¢ ijaX(EDD)

nin +1)

Rescale processing times and due dates as follows:

. d
p'y=Lp; /K d ;= —

Apply Algorithm Minimizing Total Tardiness to
the rescaled data.

Running time complexity: O(n>T, . (EDD)/K)=0(n’/¢)

76

O G PTAS Minimizing Total Tardiness

Example
jobs 1 2 3 4 3
o 1210 790 1470 830 1300
d, 1996 2000 | 2660 3360 3370

m Optimal sequence 1,2,4,5,3 with total tardiness 3700.
= Verified by dynamic programming

B Thax(EDD)=2230
» If £ is chosen 0.02 then we have K=2.973.

m Optimal sequences for the rescaled problem: 1,2,4,5,3 and 2,1,4,5,3.
» Sequence 2,1,4,5,3 has total tardiness 3704 for the original data set.
» >T(2,1,4,5,3)<1.02:3T,1,2,4,5,3)

77

i

Total Earliness and Tardiness

Objective Z Ej + X T;
=% This problem is harder than total tardiness.
= A special case is considered with d; = d for all jobs j.

Properties of the special case

m No idleness between any two jobs in the optimal schedule
= The first job does not need to start at time 0.
B Schedule S is divided into 2 disjoint sets

/\

early completion late completion
Cj <d Cj >d
job set J1 job set Jo

78

Omﬁ Total Earliness and Tardiness

m Optimal Schedule:
Early jobs (J1) use Longest Processing Time first (LPT)
Late jobs (J2) use Shortest Processing Time first (SPT)

m There is an optimal schedule such that one job completes exactly
at time d.

Proof: Job j* starts before and completes after d.
If [J4] < |J2| then
shift schedule to the left until j* completes at d.
If [J1] > |J2| then
shift schedule to the right until j* starts at d.

79

O ﬁ Minimizing Total Earliness and ’#

Tardiness with a Loose Due Date

Assume that the first job can start its processing aftert =0 and p1 > p2 >

... 2> pn holds.
m Step1 Assign job 1 to set J1.
Setk = 2.
m Step 2 Assign job k to set Jyand job k + 1 to set J; or vice versa.
m Step 3 Ifk+2<n-1, setk =k+2 and go to Step 2

If k+2 = n, assign job n to either set J; or set Joand STOP.
If k+2 = n+1, all jobs have been assigned;
STOP.

80

O ﬁ Minimizing Total Earliness and ’#

Tardiness with a Tight Due Date

The problem becomes NP-hard if job processing must start at time 0 and
the schedule is nondelay.

It is assumed that p1 > p2 > ... > py holds.

m Step1 Setti=dand 1, =X p; -d.
Setk =1.
m Step?2 If T4 = 12, assign job k to the first unfilled

position in the sequence and set t1 = 11 — p«.

If T4 < 12, @ssign job k to the last unfilled
position in the sequence and set 12 = 12 — pk.

m Step3 Ifk <n,setk=k+ 1and go to Step 2.
If k =n, STOP.

81

O Minimizing Total Earliness and
m Tardiness with a Tight Due Date

m 6 jobs withd =180

jobs 1 2 3 4 3 6

Pi 106 100 96 22 20 2

m Applying the heuristic yields the following results.

T T2 Assignment Sequence
180 166 Job 1 Placed First 1 XXXXX
74 166 Job 2 Placed Last 1XXXX2
74 66 Job 3 Placed First 13xxx2
-22 66 Job 4 Placed Last 13xx42
-22 44 Job 5 Placed Last 13x542
-22 24 Job 6 Placed Last 136542

82

Tardiness

O ﬁ Minimizing Total Earliness and '#

m Objective Z WE;+ Z w"T; with d;=d.
= All previous properties and algorithms for X E;+ X T; can be generalized
using the difference of w' and w".

m Objective ~ wj'Ej+ X w;"T; with dj=d.
% The LPT/SPT sequence is not necessarily optimal in this case.
% WLPT and WSPT are used instead.
e The first part of the sequence is ordered in increasing order of w;/
Pi-
e The second part of the sequence is ordered in decreasing order of
w;/ pj.

83

O Minimizing Total Earliness and
ﬁﬁﬁ Tardiness

m Objective ~ W'E;+ X w"T; with different due dates
% The problem is NP — hard.
a) Sequence of the jobs
b) ldle times between the jobs
» dependent optimization problems

m Objective X wj'Ej+ X w;"T;with different due dates
% The problem is NP — hard in the strong sense.
e Itis more difficult than total weighted tardiness.

If a predetermined sequence is given then the timing can be
determined in polynomial time.

84

Omﬁ Primary and Secondary Objectives ’#

A scheduling problem is usually solved with respect to the primary
objective. If there are several optimal solutions, the best of those
solutions is selected according to the secondary objective.

a | B|yq(opt), v,

/

primary secondary
objective objective

m We consider the problem 1 || £ C; (opt), Lmax.
= All jobs are scheduled according to SPT.

= |f several jobs have the same processing time EDD is used to order
these jobs.

e SPT/EDD rule

85

Omﬁ Reversal of Priorities

m We consider the problem with reversed priorities:
1T || Lmax (opt), Z C,

» L is determined with EDD.

max
» Z:= Lmax

Transformation of this problem:

aj:dj+z

N\

new deadline old due dates

86

Omﬁ Reversal of Priorities ’#

m After the transformation, both problems are equivalent.

» The optimal schedule minimizes £ C; and guarantees that each job
completes by its deadline.

=» In such a schedule, job k is scheduled last if

de 2 Y p, and p, > p,
=1

5

foralllsuchthat d« > > p, hold.

=1

m Proof: If the first condition is not met, the schedule will miss a
deadline.

= A pairwise exchange of job | and job k (not necessarily adjacent)
decreases X C;if the second condition is not valid for | and k.

87

O G Minimizing Total Completion Time with

Deadlines
m Step 1 Setk =n, TZZj:1pj,JC={1,...,n}
m Step?2 Find k*in Jesuchthatd«- > Tand p,.. > p,

for all jobs lin Jesuch that d |, > T
m Step 3 Decrease k by 1.

Decrease t by p,.

Delete job k* from J¢.

m Step4 If k> 1 go to Step 2, otherwise STOP.

The optimal schedule is always nonpreemptive even if preemptions are
allowed.

88

Minimizing Total Completion Time with

i

Deadlines
jobs 1 2 3 4 3
Pj 4 6 2 4 2
d, 10 12 14 18 18
1=18=d,=d; =18 =1
P, =4>2=p;g
» Lastjob:4
» 1=18-p,=14=d;=14>14 d.=182>14
Ps=2=p;
=» Either job can go in the now last position : 3

» 1=14-p;=12=d,=182>12 d,=122>12
p,=6>2=p;

=» Next last job: 2

» 1=12-p,=6=d,=182>6 d,=102>12
p,=4>2=p;

» Sequence: 51234

89

Oﬁﬁﬁ Multiple Objectives

In a generalized approach, multiple objectives are combined in a linear
fashion instead of using a priority ordering.

m Objectives: V1,75

m Problem with a weighted sum of two (or more) objectives:

1MBl1O® v, + 0,7,

m The weights are normalized: @1 + @2 = 1

90

Omﬁ Pareto-Optimal Schedule

A schedule is called pareto-optimal if it is not possible to decrease the
value of one objective without increasing the value of the other.

®, —> 0 and O, —>1

» 1By, +0,y, =1 B|y,(0pt),1,

®,—>1 and G, >0

»> 1B Oy, +0O,y, —>1[B | y,(opt), 7,

91

Om‘tﬁ Pareto-Optimal Schedule

71:2.C

.

7/2 :Lmax

_— [o o e e o e e o e = o o =

EDD) Lmax(SPT/EDD)

Lmax

92

O

m Pareto-Optimal Solutions

Generation of all pareto-optimal solutions

Find a new pareto-optimal solution:
" Determine the optimal schedule for Limax.

< Determine the minimum increment of Lyax tO
_decrease the minimum X C;.
Similar to the minimization of the

total weighted completion time with deadlines

Start with the EDD schedule,
end with the SPT/EDD schedule.

93

m Step1

m Step?2

m Step 3

m Step 4

Pareto-Optimal Solutions

Setr=1
SetL. . =L, (EDD)and d; = d,+L
Setk—nandJC—{1 n}.

SetT = ZJ P and 8—r

Find j* in J° such that dj =T and P 2P,
for all jobs in Jesuch that d; >T.
Put job j* in position k of the sequence.

If there is no job / such thatd;, <1 and p, >p;,
go to Step 5.

Otherwise find j** such that T— d e = mln(T dl)

for all [such that d, <1 and p, > o

Set 8 =71- d —_

fo" <o , then6:6**.

94

Omﬁ Pareto-Optimal Solutions

m Step 5 Decrease k by 1.
Decrease 1 by p;- .
Delete job j* from J¢
If k>1, gotoStep3
Otherwise go to Step 6.

m Step 6 SetlL, .= L, *9.

IfL_. >L__(SPT/EDD), then STOP.

Otherwise setr=r+ 1, a,- :a,- + 0, and go to Step 2.
Maximum number of pareto — optimal points

% n(n —1)/2 = O(n?)

Complexity to determine one pareto — optimal schedule
% O(nlog(n))
=» Total complexity O(n?® log(n))

95

Omﬁ Pareto-Optimal Solutions

jobs 1 2 3 4 3
P 1 3 6 7 9
dj 30 27 20 15 12
m EDD sequence 54321 =L, (EDD)=2
c;=22 d;=20

m SPT/EDD sequence 1,2,345 =L, (
C; =26 ds=12

SPT/EDD) =14

96

i

Pareto-Optimal Solutions

lteration r (2Ci, Liax) Parc:’;c;]; dc:ﬁ;imal current T+ 8
1 96, 2 5,4,3,1,2 32 29 22 17 14 1
2 77, 3 1,5,4,3,2 33 30 23 18 15 2
3 75, 5 1,4,5,3,2 35 32 25 20 17 1
4 64, 6 1,2,5,4,3 36 33 26 21 18 2
3 62, 8 1,2,4,5,3 38 35 28 23 20 3
6 60, 11 1,2,3,5,4 41 38 31 26 23 3
7 58, 14 1,2,3,4,5 44 41 34 29 26 | Stop

m 1]]©, 3w C+0,L

max

Extreme points (WSPT/EDD and EDD) can be determined in polynomial time.
% The problem with arbitrary weights ®, and ©,is NP — hard.

97

Oﬁﬁﬁ Parallel Machine Models '#

m A scheduling problem for parallel machines consists of 2 steps:
= Allocation of jobs to machines
% Generating a sequence of the jobs on a machine

® A minimal makespan represents a balanced load on the machines.

m Preemption may improve a schedule even if all jobs are released at
the same time.

m Most optimal schedules for parallel machines are nondelay.
» Exception: R, || 2 C,

m General assumption for all problems: p,=p, =...2p,

98

O
it Pl Cona

The problem is NP-hard.
» P, || C, IS equivalent to Partition.

Heuristic algorithm: Longest processing time first (LPT) rule
Whenever a machine is free, the longest job among those not yet
processed is put on this machine.

(LPT) < 4 1

=» Upper bound: C max
(OPT) 3 3m

max

=» The optimal schedule C
bound holds:

(OPT) is not necessarily known but the following

max

C_..(OPT)> Zp ;

99

Omﬁ Proof of the Bound ’#

m If the claim is not true, then there is a counterexample with the
smallest number n of jobs.

m The shortest job n in this counterexample is the last job to start
processing (LPT) and the last job to finish processing.

= If nis not the last job to finish processing, then deletion of n does not
change C, ., (LPT) while C,__, (OPT) cannot increase.

=% A counter example with n — 1 jobs

max

m Under LPT, job n starts at time C, . (LPT)-p,..
» Intime interval [0, C__ (LPT) —p,], all machines are busy.

max

13
C, .. (LPT)- EZpJ

100

Omﬁ Proof of the Bound

I
C__(OPT) C__(OPT) opPT) "

max (max

C,...(OPT)<3p,

At most two jobs are scheduled on each machine.
For such a problem, LPT is optimal.

101

i

jobs

1

2

Pi

7

7

m 4 parallel machines

m C
m C

o (OPT) =12 =7+5 = 6+6 = 4+4+4
(LPT)=15= (4/3-1/(3:4))-12
! 4
! 4
6 5
6 5

102

Omﬁ Other Makespan Results '#

C
C

st _,_ 1

(OPT) m

max

Arbitrary nondelay schedule

max

P. | prec|C., With2 <m < wis strongly NP hard even for chains.

Special case m>n: P_ | prec | C,, .,
Start all jobs without predecessor at time 0.

Whenever a job finishes, immediately start all its successors for
which all predecessors have been completed.

= Critical Path Method (CPM)
=% Project Evaluation and Review Technique (PERT)

103

Omﬁ Heuristics Algorithms ’#

m Critical Path (CP) rule

=% The job at the head of the longest string of jobs in the precedence
constraints graph has the highest priority.

» P,lp =1 tree | C, is solvable with the CP rule.

m Largest Number of Successors first (LNS)

= The job with the largest total number of successors in the precedence
constraints graph has the highest priority.

» For intrees and chains, LNS is identical to the CP rule
» LNSis also optimal for P, | p; = 1, outtree | C,.

m Generalization for problems with arbitrary processing times

= Use of the total amount of processing remaining to be done on the jobs in
question.

104

Pnlpj=1,tree |C

max

highest level |

max

N(l) number of jobs at level |

root

startng jobs

o

H(Imax +1 _r) — ZN(Imax +1_k)
k=1

Number of nodes at the r
highest levels

105

Omﬁ CP for P,|p;=1,prec|C,

C
C

max (CPM)
(OPT)

s% for two machines

max

almost fully connected
bipartite graph

1] @ ®
2l @ ® » O

© ©
« & O
® ©

106

i

LNS for P,|p;=1,prec|C

max

® O
® ©
@ ©

107

o o
I_T_Flﬁ Pmlpj=1’Mj|Cmax H

A job can only be processed on subset M, of the m parallel machines.

Here, the sets M, are nested.
= Exactly 1 of 4 conditions is valid for jobs j and k.

2> M, is equal to M, (M=M,)
2 M, is a subset of M, (McM,)
2> M, is a subset of M, (M>M,)

< M, and M, do not overlap. (M"M,=g)

Every time a machine is freed, the job is selected that can be processed
on the smallest number of machines.

> Least Flexible Job first (LFJ) rule

2> LFJis optimal for P, | p;=1, M, | C andforP |p,=1, M, | C , when
the M sets are nested (pairwise exchange).

108

O
IIFE ID'“”lpjz'l’lvlj|Cmax

m Consider P, | p; =1, M, | C.,, with eight jobs. The eight M, sets are:

» M, ={1,2}
» M, =M, ={1,3,4}
» M, = {2}
» M; = Mg =M; =My ={3,4}
Machines 1 2 3 4
LFJ 1 4) 6
2 V4 8
3
optimal 2 1) 7
3 4 6 8

® LFM (Least Flexible Machine) and LFM-LFJ do not guarantee
optimality for this example either.

109

Omﬁ Makespan with Preemptions m#

Linear programming formulation for P, | prmp | C, .,
The variable x; represents the total time job j spends on machine i.

Minimize C, ., subject to
m /_pr?essing time
i = P; inj <C,. |ofeachjobisless
i=1 than makespan
X. >0 non-negative
<
Xj < Crnax ! D execution
fragments
processing time processing on each machine

of job | is less than makespan 110

Omﬁ Makespan with Preemptions ’#

m The solution of a linear program yields the processing of each job
on each machine.

% A schedule must be generated in addition.

m Lowerbound: C__ > max{p1,2pj/m} =C*__
j=1

Algorithm Minimizing Makespan with Preemptions

1. Nondelay processing of all jobs on a single machine without
preemption = makespan <m -+ C*__
2. Cutting of this schedule into m parts

3. Execution of each part on a different machine

111

Oﬁﬁﬁ LRPT Rule ’#

Longest Remaining Processing Time first (LRPT)
=% Preemptive version of Longest Processing Time first (LPT)
= This method may generate an infinite number of preemptions.

Example: 2 jobs with p,=p,=1 and 1 machine
The algorithm uses the time period .
=% Time ¢ after the previous decision the situation is evaluated again.
The makespan of the schedule is 2 while the total completion time
iIs4 — €.
=» The optimal (non preemptive) total completion time is 3.

The following proofs are based on a discrete time framework.
=% Machines are only preempted at integer times.

112

Omﬁ Vector Majorization ’#

Vector of remaining processing times at time t
(P4(£), Po(D), e Pa(t)) =P ().

A vector p(t)majorizes a vector q(t),p(t)=_ q(t), if
Zk:p(j)(t) > Zk:q(j)(t) holds forallk =1, ..., n.
= =

p((t) is the j" largest element of p(t).
Example

Consider the two vectors B(t) =(4,8, 2,4)and a(t) =(3, 0, 6, 6).

Rearranging the elements within each vector and putting these in
decreasing order results in vectors (8, 4, 4, 2) and (6, 6, 3, 0).

It can be easily verified that p(t) > q(t).

113

Oﬁﬁﬁ LRPT Property ’#

If p(t) > q(t) then LRPT applied to p(t) results in a larger or equal
makespan than obtained by applying LRPT to q(t).

Induction hypothesis: The lemma holds for all pairs of vectors with
total remaining processing time less than or equal to Z p,(t)-1 and

Z q;(t) -1, respectively.

Induction base: Vectors 1,0, ...,0and 1, 0, ... O.

After LRPT is applied for one time unit on p(t) and _a(t), respectively,
then we obtain at time t+1 the vectors p(t+1) and q(t +1) with

Zn:pj(t+1)ﬁzn:pj(t)—1 and iqj(tu)siqj(t)—

If p(t)>_ q(t), then p(t+1)=_ q(t+1).

114

Oﬁﬁﬁ Result of the LRPT Rule !#

LPRT yields an optimal schedule for P, | prmp | C, ., in discrete time.

We consider only problems with more than m jobs remaining to be
processed.

Induction hypothesis: The lemma holds for any vector p(t) with

Z?:1pj(t)gN—1.) \
We consider a vector p(t) with ij1pj(t) =N .

If LRPT is not optimal for E(t), then another rule R must be optimal.
R produces vector q(t+1) with q(t+1)>_ p(t+1).

From time t+1 on, R uses LRPT as well due to our induction hypothesis.

Due to the LRPT property, R cannot produce a smaller makespan than
LRPT.

115

Oﬁﬁﬁ LRPT in Discrete Time ’#

Consider two machines and three jobs 1, 2 and 3, with processing times
8,7, and 6.

C. (LRPT)=C __(OPT)=11.

max max

Remember: Ties are broken arbitrarily!

116

Oﬁﬁﬁ LRPT in Continuous Time ’#

Consider the same jobs as in the previous example.
As preemptions may be done at any point in time,
processor sharing takes place.

C...(LRPT)=C__ (OPT)=10.5.

max max

To prove that LRPT is optimal in continuous time, multiply all processing
times by a very large integer K and let K go to «.

117

0 . .
mﬁ Lower Bound for Uniform Machines &

Q,, | prmp | C,a
note n!

C __. >max| —,

max

forv,2v,2..2v

Comparison: P, | prmp | C,, C.. > maX{p1,zpj/m}
j=1

118

Oﬁﬁﬁ LRPT-FM ’#

" Longest Remaining Processing Time on the Fastest
Machine first (LRPT — FM) yields an optimal schedule with infinitely
many preemptions for Q. | prmp | C,,.

= At any point in time the job with the largest remaining processing time is
assigned to the fastest machine.

m Proof for a discrete framework with respect to speed and time
= Replace machine j by v; machines of unit speed.

= A job can be processed on more than one machine in parallel, if the
machines are derived from the same machine.

m Continuous time:
=» All processing times are multiplied by a large number K.
% The speeds of the machines are multiplied by a large number V.

" The LRPT-FM rule also yields optimal schedules if applied to
Qn, [1, prmp | Cppy.

119

Oﬁﬁﬁ Application of LRPT-FM

® 2 machines with speed v,=2, v, = 1
m 3 jobs with processing times 8, 7, and 6

1 1

Machine 1
1 3 .
2 2

120

O : :
m > C; without Preemptions (1)
Different argument for SPT for total completion time without preemptions
on a single machine.
P processing time of the job in position j on the machine

ZCj:n-p(1)+(n—1)-p(2)+ +2-Ppy P

* Py S Py = Pa) S oo S Piaq) S Py Must hold for an optimal schedule.

121

Omﬁ > C; without Preemptions (2)

SPT rule is optimal for P, || 2 C,

m The proof is based on the same argument as for single machines.

m Dummy jobs with processing time 0 are added until n is a multiple of m.

=» The sum of the completion time has n additive terms with one coefficient
each:

m coefficients with value n/m
m coefficients with value n/m — 1

m coefficients with value 1

m The SPT schedule is not the only optimal schedule.

122

Omﬁ > W;C; without Preemptions

jobs 1 2 3
Pi 1 1 3
W;j 1 1 3

m 2 machines and 3 jobs
m With the given values any schedule is WSPT.

m If w, and w, are increased by ¢
% WSPT is not necessarily optimal.

2LWCWSPT) 1. 5

m Tight approximation factor <
> w,C,(OPT) 2

m P, |l 2w C is NP hard.

123

(l_)T_FE P, | prec| 2 C, '#

m P, |prec| X Cis strongly NP-hard.

m The CP rule is optimal for P | p, = 1, outtree | 2. C,.
=% The rule is valid if at most m jobs are schedulable.
» t, is the last time the CP rule is not applied but rule R.
e String 1 is the longest string not assigned at t,
e String 2 is the shortest of the longest strings assigned at t,
e C."is the completion time of the last job of string 1 under R
e C, is the completion time of the last job of string 2 under R

» If C,’2C,’+1 and machines are idle before C,” — 1, then CP is better than
R, otherwise CP is as good as R.

m However, the CP rule is not always optimal for intrees.

124

Omﬁ Other > C, Problems ’#

m The LFJ rule is optimal for P |p=1,M,|> C, when the M, sets are nested.
m The R, [[2C, problem can be formulated as an integer program

= Although linear integer programming is NP-hard this program has a
special structure that allows a solution in polynomial time.
» X,;=1if job j is scheduled as the k™ to last job on machine i.
® X, are 0-1 integer variables.

m

Minimize ZZZKPU K, subjectto

1j1k1

szlkj j=1,..., n

i=1 k=1
lekj_1 i=1,..,mandk=1,.,n
x 6{01} i=1,..., m k=1,..., nandj=1,..., n

125

Omﬁ Example R |[>.C;

jobs 1 2 3
P 4 5 3
P2 8 9 3

® 2 machines and 3 jobs

m The optimal solution corresponds to x;,,=X;1,=X,13=1. All other x,,; are
0. The optimal schedule is not nondelay.

1 2 Machine 1
3 Machine 2

126

Omﬁ > C; with Preemptions (1) ’#

The nonpreemptive SPT rule is also optimal for P [prmp|[> C;.

Q. lprmp|3 C; can be solved by the

Shortest Remaining Processing Time on the Fastest Machine
(SRPT-FM) rule.
» Useful lemma: There is an optimal schedule with C=C, when p;=p, for all
j and k. (Proof by pairwise exchange)
» Under SRPT-FM, we have C <C_ .= ... <C,.
=% Assumption: There are n machines.

e If there are more jobs than machines, then machines with speed 0O
are added.

e If there are more machines than jobs, then the slowest machines are
not used.

127

Omﬁ > C; with Preemptions (2)

V1Cn = Pn
VZCn + vy (Cn-1 — Cn) = Pn-1
V3Cn + V2(Cn-1 - Cn) + V1(Cn-2_ Cn-1) = Pn2
ViCrt Via(Cry = Cp) + v4(Cy = Cy) = p;
Adding these equations yields
V1Cn = Pn
VoG, + V4Cy =Pt Py

V3G, + VoG +viC L =Py + Prt + P

VoGtV Gy + ..+ VvCi=p, + Py t . Py

128

Omﬁ > C; with Preemptions (3) '#

Let S’ be an optimal schedule with C'. <C’_, < ... < C’, (see the lemma).
Then we have C', > p, /v, = Vv,C' >p,.

The amount of processing on jobs n and n —1 is upper bounded by
(Vi +vp)C + vy (C L = C). = v ,C L+ viC > p, + Py
Similarly, we obtain
vC +v C . +..+Vv,C i 2P, T Prqt - F Prer

This yields
v,C' >v,C,
vo,C'h+viC 2 v,Cp + v C

vC,+vC +...+vC, >2vC +v C ,+..+Vv,C,

129

Omﬁ > C; with Preemptions (4)

We want to transform this system of inequalities into a new system such
that

= inequality i is multiplied by o, > 0 and

= the sum of all those transformed inequalities yields > C, > 2. C;.
= The proof is complete, if those o exists.

% o, must satisfy

vio, o Voo, ol + Vv o, =1
Vi, ¥ Voot .otV o, =1
Vo =1

Those o, exists as v, > v, > ... > v, holds.

130

Oﬁﬁﬁ Application of the SRPT-FM Rule 4

machines 1 2 3 4
V; 4 2 2
jobs 1 2 3 4 5 6 7
P; 61 46 45 40 34 16 8

Preemptions are only allowed at integer points in time.

C7=2 C2=5 C3=11 C4=16 C5=21 C6=26 C7=35
Machine 1 7| 6 5 4 3 2 1
Machine 2 6| 5 4 3 2 1
Machine 3 5 4 3 2 1 SRPT-FM produces an optimal
1T i i schedule with > C, =116
Machine 4 4| 3 2 1

0 5 10 15 20 25 30 35

v
™~

131

Omﬁ Due — Date Related Objectives '#

P.ll Cax < Pl Lo (@l due dates 0)
=% The problem is NP-hard.

Q,, | prmp | L.
Assume L, .. =2z

max
» C<d+z
set d7 d; + z (hard deadline)
Hard deadlines are release dates in the reversed problem.
Finding a schedule for this problem is equivalent to solving
Q| 1, prmp | Cp oy
If all jobs in the reverse problem “finish” at a time not smaller than 0, then
there exists a schedule for Q,, | prmp | L, with L .= z.

=% The minimum value for z can be found by a simple search.

vy 3 3

\ g

132

(l_ID_T_FE Example P2 | prmp | L, .,

jobs 1 2 3 4
d, 9 8 3 4
Pi 8 3 3 3

Is there a feasible schedule with L., =0 ? (d;=d,)

jobs 1 2 3 4
r 0 1 4 3
Pj 8 3 3 3

Is there a feasible schedule with C__, <97
133

Omﬁ Flow Shops '#

m Each job must follow the same route.
=® There is a sequence of machines.

m There may be limited buffer space between neighboring machines.
=% The job must sometimes remain in the previous machine: Blocking.

m The main objective in flow shop scheduling is the makespan.
= [t is related to utilization of the machines.

m [f the First-come-first-served principle is in effect, then jobs cannot
pass each other.

% Permutation flow shop

134

Omﬁ Unlimited Intermediate Storage

m Permutation Schedule j,, j,,...,],

m There is always an optimal schedule without job sequence changes
in the first two and last two machines.

» F2|| C, . and F3|| C, ., do not require a job sequence change in some
optimal schedule.

135

Directed Graph for F_ |prmu|C

max

_V mEw 'R @

136

O
mﬁ Example F4|prmu|C, .,

5 jobs on 4 machines with the following processing times

jobs J1 Jo 3 Ja Js

5 5 3 6 3
P,

4 4 2 4 4
P2,

4 4 3 4 1
Ps,,

3 6 3 2 5
P4,

-

O
m Directed Graph in the Example

=p Critical path

138

Gantt Chart in the Example

5 5 3 6 3
Y
4 4 2 4 4
Y Y
4 4 3 4 1
Y
3 6 3 |2 5
I I I I I I I I
0 10 20 30

139

Omﬁ Reversibility ’#

Two m machine permutation flow shops with n jobs are considered with

Pt = PP -
» p;(" and p;(? denote the processing times of job j in the first and the
second flow shop, respectively.

Sequencing the jobs according to permutation j,, ..., j, in the first flow
shop produces the same makespan as permutation j, ..., J, in the
second flow shop.

% The makespan does not change if the jobs traverse the flow shop in the
opposite direction in reverse order (Reversibility).

140

i

Example Reversibility (1)

5 jobs on 4 machines with the following processing times
(original processing times in parentheses)

jobs J1 Jo 3 Ia s

3 (5) 6 (5) 3 (3) 2 (6) 5 (3)
P,

4 (4) 4 (4) 3 (2) 4 (4) 1(4)
P2,

4 (4) 4 (4) 2 (3) 4 (4) 4 (1)
Ps,

5 (3) 5 (6) 3 (3) 6 (2) 3 (5)
Paj

141

S
~
>
=
Q
(7))
| -
(O
>
)
Y
Q@
Q.
&
©
X
LL

i

Reverse problem

Original problem

142

Example Reversibility (3)

143

inf 2o o

F2||C,,.x With unlimited storage in between the two machines
=% The optimal solution is always a permutation.

m Johnson’s rule produces an optimal schedule.
- The job set is partitioned into 2 sets.
Set | : all jobs with p;; < p,,
Set Il : all jobs with py < p,;
SPT (1) — LPT(2) schedule:
= All jobs of Set | are scheduled first in increasing order of p,; (SPT).

» ,(AII jol)as of Set Il are scheduled afterwards in decreasing order of p,,
LPT).

m There are many other optimal schedules besides
SPT(1) — LPT(2) schedules.

% The SPT(1) - LPT(2) schedule structure cannot be generalized to yield
optimal schedules for flow shops with more than two machines.

144

Om ﬁ Proof of Johnson’s Rule (1) ’#

Contradiction: Assume that another schedule S is optimal.

=% There is a pair of adjacent jobs j followed by k such that one of the
following conditions hold:

e Job jbelongs to Set Il and job kto Setl; (Case 1)
e Jobs jand k belong to Set | and p,>p,,; (Case 2)
e Jobs jand k belong to Set Il and p,<p,,; (Case 3)

m Sequence in schedule S:job /= jobj= job k= job h

C; : completion time of job j on machine i in schedule S

C’; : completion time of job j on machine i in the new schedule.

145

Omﬁ Proof of Johnson’s Rule (2) '#

m Interchange of jand k
» Starting time (C,, + py; + p4) of job h on machine 1 is not affected
Starting time of job h on machine 2:
Cox =max (max (Cy, Cy+ pyy) + Py, Gy + Py + Pyy) + Py
=max (Cy + Py + Poys Cqy + Py + Py + Po Copp + Py + Py + Paid)
C'y=max (Cy + Py + Py Coy + Py + P + Pojy Coy + Py + Py + Py)

m Case 1:py;>pyand pyy < py
» Co Py T Po + Py < Cyy Py + Py + Pog

Coit Pt Pyt Py < Cypt Pyt Py + P

m Case?2: P1) = Pgj s P1k = Pax and P1j > Pk
Ciit Pict Pax t Py
<Cyt Pyt Pyt P
Cit Pt Pyt Py

m Case 3 is similar to Case 2 (reversibility property). 146

[Fon | PIMU | C o -

Formulation as a Mixed Integer Program (MIP)

m Decision variable x, = 1, if job j is the k™ job in the sequence.

m | : amount of idle time on machine i/ between the processing of jobs
in position k and k+1

m W,: amount of waiting time of job in position k between machines i and /+1

m A, difference between start time of the job in position k+1 on machine i+1
and completion time of the job in position k on machine /

® p, Pprocessing time of the job in position k on machine /

> Ay i Pigerty T Wiger = Wi + Praggo * livr
147

i

Machine i

Machine i +1

Graphical Description of A,

. Ai
— —— Wik
Pi(k) Pi(k+1)
Wi
Pi+1(k-1) Pi+1(x) Pi+1(k+1)

W,>0andl,; =0

148

Oﬁﬁﬁ MIP for F._ | prmu | C,... (1) Fa

® Minimizing the makespan = Minimizing the idle time on machine m

m -1 n-1
; Pigy + ; oy
/ \

earliest start time of intermediate idle time

job in position 1 at machine k

n
m Remember: P, = Z X kP
j=1

=» there is only one job at position k!

149

Oﬁﬁﬁ MIP for F,,, | prmu | Cpnay (2)

m-1 n n-1
min| > > x;py |+l
i=1

i=1 j=1
subject to)
Z Xy =1 k=1,..,n
1?11
Z X = 1 j=1,...,n
n k=1
IIK+ZXJK+1plj + Wi — ZXJka—']J ik =0
j=1
fork—1,...,n1,|—1,..., m-1
W|1 - 0 I = 1, saay m'1 Xjk = {0,1} J=1, ,n
L, =0 k=1, ..., n-1 k=1, ...,m
W, >0 i=1, ..., m1; k=1
l, >0 i=1,....,mk=1, ..., n-1

150

[F3/C e

m F3|| C, is strongly NP-hard.
= Proof by reduction from 3 — Partition

® An optimal solution for F3 || C,,,, does not require sequence changes.
% F_|prmu|C__, is strongly NP — hard.

m F,|prmu, p; = p;| C. : Proportionate permutation flow shop
=» The processing of job j is the same on each machine.

m Coox =D P, +(m—=1)max(py,..., p,) for
=1

Fm | Prmu, p; = p; | C.x (independent of the sequence)
This is also true for F | p;=p; | C

max-

151

Omﬁ Proportionate Flow Shop ’#

Similarities between the single machine and the proportionate
(permutation) flow shop environments

1. SPTis optimal for 1 || 2 C;and F | prmu, p; = p; | % C;.

2. The algorithm that produces an optimal schedule for 1 || 2. U, also results
in an optimal schedule forF | prmu, p; =p; | 2 U,

3. The algorithm that produces an optimal schedule for 1 || h_ .. also results

in an optimal schedule forF | prmu, p; = p; | ho-

max

4. The pseudo-polynomial dynamic programming algorithm 1 || X T,is also
applicable to F ., | prmu, p; =p; | 2 T,

5. The elimination criteria that hold for 1 || 2 w;T also hold for

Fr l Prmu, p; = p; | 2 W, 152

o

Omﬁ F2 |2 G

m F2|| X C,is strongly NP — hard
» Fm|prmu |2 C; is strongly NP — hard

as sequence changes are not required in the optimal schedule for 2
machines

153

i

Slope Heuristic

[Slope index A for job |

jobs

—(2i-M)p,

P,

] Sequencmg ijObS in

_decreasing order of the slope

m Consider 5 jobs on 4 machines

with the following processing

Sequences 2,5,3,1,4
and 5,2,3,1.4 are
optimal and the
makespan is 32.

w

(3x5)—(1x4)+(1x4)+(3x3)=-

{(3x5)—(1x4)+(1x4)+(3x6)=+3
(3x3)-(1x2)+(1x3
(3x6)—(1x4)+(1x4
c=(3x3)=(1x4)+(1x1)+(3x5)=+3

W~ B[O
O &~ B~ O

3x3)=+1
3x2)=-12

O ﬁ Flow Shops with Limited Intermediate ’#

Storage (1)

m Assumption: No intermediate storage, otherwise one storage place is
modeled as machine on which all jobs have 0 processing time

®m Fm|block | C, .,
D, : time when job j leaves machine i, D; 2 C,
m Forsequencej,, ..., j, the following equations hold

Dij, = 2P,
=1

D. = maX(D i-1, jk + pi,jk ’Di+1’jk1)

I)k

Do =Dnoti +Pmi

= Critical path in a directed graph
Weight of node (i, j,) specifies the departure time of job j, from machine i
Edges have weights 0 or a processing time

155

O ﬁ Flow Shops with Limited Intermediate ’#

Storage (2)

m The reversibility result holds as well:

m IfpM=p@ ., thensequence j,, ..., j, in the first flow shop has the
same makespan as sequence j,,,, j, in the second flow shop

m F2|block | C,. is equivalent to a Traveling Salesman problem with
n+1 cities

m When a job starts its processing on machine 1 then the proceeding
job starts its processing on machine 2

= time for job j, on machine 1

max(Py ,Pz,, ,)
Exception: The first job j* in the sequence spends time p, ;. on machine 1
Distance from city j to city k

dok = Pk
dijp = Py
dy = max (py, P1k)
156

O Directed Graph for the Computation of
m the Makespan

[]
[]
P

157

O G Graph Representation of a Flow Shop

with Blocking
jobs Jq J2 I3 J4 Js
P, 5 5 3 6 3
P2, 4 4 2 4 4
P, 4 4 3 4 1
P4, 3 6 3 2 3

0 10 20 30 158

Example: A Two Machine Flow Shop
with Blocking and the TSP (1)

i

m Consider 4 job instance with processing times

jobs 1 2 3 4
P,. 2 3 3 9
P,. 8 4 6 2
m Translates into a TSP with 5 cities
cities 0 1 3 4
of 0 2 3 9
a 0 8 6 2

m There are two optimal schedules
m 1,423 0-015452>53->50 and
m 1,43 2

159

O Example: A Two Machine Flow Shop
ﬁﬁﬁ with Blocking and the TSP (2)

m Comparison SPT(1) — LPT(2) schedules for unlimited buffers:
1,3,4,2;, 1,2,3,4 and 1,3, 2,4

m F3|Dblock | C,., is strongly NP — hard and cannot be described as a
traveling salesman problem

160

Omﬁ Special Cases of Fm | block | C,_, 2 A

m Special cases of Fm | block | C, .,
= Proportionate case: Fm | block, p; = p; | C,

m A schedule is optimal for Fm | block, p; = p, | C., if and only if it is an
SPT- LPT schedule

5

m Proof: Crax 2 2,P;+ (M —-T)max(p ..., p,)

max
=1

N— -
—~

optimal makespan with unlimited buffers

m Proof — concept:

e Any SPT-LPT schedule matches the lower bound
e Any other schedule is strictly greater than the lower bound

161

Oﬁﬁﬁ SPT- LPT Schedule '#

m SPT - part: A job is never blocked

m LPT - part: No machine must ever wait for a job

% The makespan of an SPT — LPT schedule is identical to an SPT — LPT
schedule for unlimited buffers.

m Second part of the proof by contradiction

The job j, with longest processing time contributes m times its
processing time to the makespan

m If the schedule is no SPT- LPT schedule

% ajob j, is positioned between two jobs with a longer processing time

= this job is either blocked in the SPT part or the following jobs cannot be
processed on machine m without idle time in between

162

Oﬁﬁﬁ Profile Fitting (PF)

m Heuristic for Fm | block | C
=» Local optimization
=» Selection of a first job (e.g. smallest sum of processing time)
=» Pick the first job as next that wastes the minimal time on all m
machines.
=» Using weights to weight the idle times on the machines depending
the degree of congestion

max

163

Omﬁ Application of the PF Heuristic

T T T e s o Eirst job: job 3 (shortest total processing
obs time)

P, |5|5|3|6|3|m Secondjob:job 1 2 4 5
o, | 44244 idle time 11 11 15 3
» job 5
Paj| 4| 4|34 % Sequence:3 51 2 4 makespan 32

.. |3]6]3]2]5 _—

makespan for unlimited storage
=» optimal makespan
m First job: job 2 (largest total processing time)
% Sequence:2 1 3 54 makespan 35

F2 | block |C, .,=F2 [nwt|C
but Fm | block | C, ., #Fm|nwt|C

max

max

164

O Flexible Flow Shop with Unlimited
mﬁﬁ Intermediate Storage (1)

m Proportionate case
FFC | pij = pj | Cmax
non preemptive preemptive

LPT heuristic LRPT heuristic
=» NP hard optimal for a single stage

165

i

Example: Minimizing Makespan with

LPT
® p,=p,=100 P3=Ps=-.. =Py =1
m 2 stages: 2 machines at first stage

1 machine at second stage

3\

o

Optimal schedule

2
+ 1st stage
/ /
J 30 1 2 } ond stage
0 100 200 301
1 3—-102
2 3—-102

0 100 200 300 400

LPT heuristic

166

O ﬁ Flexible Flow Shop with Unlimited ’#

Intermediate Storage (2)

m FF [pj=p | 2C
m SPT is optimal for a single stage and for any numbers of stage with a
single machine at each stage

m SPT rule is optimal for FF_ | p; = p; | 2 C;if each stage has at least as
many machines as the preceding stage

m Proof:
Single stage SPT minimizes 2. C,;and the sum of the starting times
2 (C;—p)
c stages: C; occurs not earlier than cp, time units after its starting time
at the first stage
Same number of machines at each stage:
SPT: each need not wait for processing at the next stage

» Z C ;= sum of the starting times + Z cp
i- =
167

Omﬁ Job Shops ’#

The route of every job is fixed but not all jobs follow the same
route

J2 || Cax
J,, : set of all jobs that have to be processed first on machine 1
J, 1 - set of all jobs that have to be processed first on machine 2

Observation: If a job from J, , has completed its processing on
machine 1 the postponing of its processing on machine 2 does not
matter as long as machine 2 is not idle.

m A similar observation hold for J, ,

» a job from J, , has a higher priority on machine 1 than any job
form J, , and vice versa

m Determining the sequence of jobs from J, ,
» F2 || C, . :SPT(1)—-LPT(2) sequence
=% machine 1 will always be busy
m J2|| C,, can be reducedtotwo F2 || C__, problems 168

Omﬁ Representation as a Disjunctive Graph G g#

m Jm|| C, is strongly NP hard
m Representation as a disjunctive graph G
Set of nodes N :
Each node corresponds to an operation (i, j) of job j on machine i
Set of conjunctive edges A:

An edge from (i, j) to (k, j) denotes that job j must be processed
on machine k immediately after it is processed on machine i

Set of disjunctive edges B:

There is a disjunctive edge from any operation (i, j) to any
operation (i, h), that is, between any two operations that are executed
on the same machine

= All disjunctive edges of a machine form a cliques of double arcs

Each edge has the processing time of its origin node as weight
169

Omﬁ Directed Graph for Job Shop ’#

m There is a dummy source node U connected to the first operation of
each job. The edges leaving U have the weight O.

m There is a dummy sink node V, that is the target of the last operation
of each job.

170

Omﬁ Feasible Schedule ’#

Feasible schedule: Selection of one disjunctive edge from each pair
of disjunctive edges between two nodes such that the resulting graph
Is acyclic

T i)
4 \\ // \‘
\

/
l

\

1 |
/ \ /

D: set of selective disjunctive edges

G(D): Graph including D and all conjunctive edges

Makespan of a feasible schedule: Longest path from U to V in G(D)
% 1. Selection of the disjunctive edges D

=% 2. Determination of the critical path
171

0 L . .
m Disjunctive Programming Formulation &

m y;: starting time of operation (i,j)
® Minimize C, subject to
Y2 Yyt P if (i,j) = (k,j) is a conjunctive edge

Crax 2 Y+ Py for all operations (i,))
YiZYitpy or

Yi 2 Y+ P for all (i,]) and (i,j) withi=1, ..., m
y; 20 for all operations (i,j)

172

O Example: Disjunctive Programming
mﬁ Formulation

® 4 machines, 3 jobs

jobs machine sequence processing times
1 1,2,3 P11 =10,p, =8, p5 =4
2 2,1,4,3 P2 =8,P12=3, Py =5, P3, =6
3 1,2,4 Pi3=4,P3=7,Py3=3

B Yy 2yt Py =y +10

mC2Yi1tpP=y +10

B Y 2yt Pp=ypt3 or Yio2Yyy + Py =Yy +10

173

O Branch and Bound Method to
ﬁﬁﬁ Determine all Active Schedules

m Q:set of all schedulable operations (predecessors of these
operations are already scheduled),

m r, :earliest possible starting time of operation

m (ij)eQ
B QcO

m t(Q) smallest starting time of a operation

174

Omﬁ Generation of all Active Schedules g#

m Step 1: (Initial Conditions) Let Q contain the first operation of each
job; Let r, =0, forall (i,j)eQ

m Step 2: (machine selection) compute for the current partial
schedule t(Q)=min{r, +p,}

(i.j)e

and let i* denote the machine on which the minimum is achieved.

m Step 3: (Branching) Let Qdenote the set of all operations (i*,j) on
machine i* such that r., <t(Q)

For each operation in Q) consider an (extended) partial schedule
with that operation as the next one on machine i*.

For each such (extended) partial schedule, delete the operation

from Q, include its immediate follower in Q, and return to Step 2. 175

Om;ﬁ Generation of all Active Schedules

m Result: Tree with each active schedule being a leaf

® A node v in this tree: partial schedule

®» Selection of disjunctive edges to describe the order of all
operations that are predecessors of Q

m An outgoing edge of v: Selection of an operation (i*,j) e Q
as the next job on machine i* |
®» The number of edges leaving node v = number of operatigns in

m V':successor of v
®» Set D’ of the selected disjunctive edges at v — G(D’)

176

Omﬁ Lower Bound for Makespan at v’ ’#

m simple lower bound: critical path in graph G(D’)
m complex lower bound:

= critical path from the source to any unscheduled operation:
release date of this operation

= critical path form any unscheduled operation to the sink: due date
of this operation

® Sequencing of all unscheduled operations on the appropriate
machine for each machine separately

»1 | r; | L. for each machine (strongly NP-hard)
=% Reasonable performance in practice

177

i

Application of Branch and Bound

y y
F 4

178

O Application of Branch and Bound
[ﬁ]{} Level 1

m Initial graph: only conjunctive edges
®» Makespan: 22

m Level 1:
0 ={(1,1),(2,2),(1,3)}

t(Q)=min{0+10,0 +8,0 + 4} =4
I* =1
Q ={(1.1), (1,3)}

179

i

Schedule Operation (1,1) first

180

-

Om'tﬁ Schedule Operation (1,1) first

m 2 disjunctive edges are added
m (1,1)> (1,2
m (1,1)->(1,3)
®» Makespan: 24

181

Omﬁ Schedule Operation (1,1) first

m Improvements of lower bound by generating an instance

of 1]r, | L, for machine 1
jobs 1 2 3
P; 10 3 4
r 0 10 10
d; 12 13 14
m L . =3 with sequence 1,2,3

m Makespan: 24+3=27

182

Omﬁ Schedule Operation (1,1) first

m Instance of 1 | r; | L, for machine 2

max

jobs 1 2 3
P; 8 8 7
I 10 0 14
d; 20 10 21

m L., =4 with sequence 2,1,3
m Makespan: 24+4 = 28

183

-

Omﬁ Schedule Operation (1,3) first

m 2 disjunctive edges are added — Makespan: 26
m 1| L. for machine 1

m L . =2 with sequence 3, 1, 2
®» Makespan: 26+2=28

184

O Application of Branch an Bound
EFE Level 2

m Level 2: Branch from node (1,1)
Q={(22),(21),(13)}
t(2Q)=min(0+8,10+810+4)=8

Q ={(2.2);}
i* =2

m There is only one choice
(2,2) > (2,1); (2,2) 2 (2,3)

m Two disjunctive edges are added

185

Omﬁ Branching Tree

No disjunctive arcs
(2,1)

» (1,1) scheduled
Leve first on
machine 1

LB=28 LB=28

Level O

(1,3) scheduled first
on machine 1

v

Level 2 Q (1,1) scheduled first

on machine 1
LB=28 (2,2) scheduled first
on machine 2

186

Omﬁ Continuation of the Procedure yields

machine job sequence
1 132 (or123)
2 213

3 12

4 23

Makespan: 28

187

Oﬁﬁﬁ Gantt Chart for J4 || C..._.

Machine 1 1 3|2
AW
Machine 2 2 1 3
Machine 3 1 2
2 3
Machine 4

188

Oﬁﬁﬁ Shifting Bottleneck Heuristic ’#

m A sequence of operations has been determined for a subset M,, of all
m machines.

= disjunctive edges are fixed for those machines
® Another machine must be selected to be included in M,: Cause of
severest disruption (bottleneck)
® All disjunctive edges for machines not in M, are deleted — Graph G’
Makespan of G’ : C__, (M,)
» for each operation (i, j) with i ¢ M, determine release date and due date
= allowed time window
m Each machine not in M, produces a separate 1 | r; | L, problem
» L. (i) minimum L__, of machine i
® Machine k with the largest L .. (i) value is the bottleneck

=% Determination of the optimal sequence for this machine — Introduction of
disjunctive edges

» Makespan increase from M, to M, U {k} by at least L (k)

189

Oﬁﬁﬁ Shifting Bottleneck Heuristic

m Resequencing of the operation of all machines in M,

jobs machine sequence processing times
1 1,2,3 P11=10,py =8, p3 =4
2 2,1,4,3 P2 =8,P12=3, Py =5, P3, =6
3 1,2,4 Pi3=4,P3=7,Py3=3

m lteration 1 : M, = & G’ contains only conjunctive edges
=» Makespan (total processing time for any job) : 22

m 1] | L. problem for machine 1:
optimal sequence 1, 2, 3 —» L (1)=5
®m 1]|r| L. problem for machine 2:
optimal sequence 2, 3,1 »> L ..(2)=5
m Similar L., (3)=4, L, .(4)=0
=» Machine 1 or machine 2 are the bottleneck

190

Oﬁﬁﬁ Shifting Bottleneck Heuristic

=» Machine 1 is selected — disjunctive edges are added : graph G”
Cinax {11)=Cran(D) + Linax(1) =22 + 5 =27

191

Oﬁﬁﬁ Shifting Bottleneck Heuristic

m lteration 2
® 1]r|L,. problem for machine 2
optimal sequence 2, 1, 3 > L, (2)=1
® 11| L. problem for machine 3
optimal sequences 1,2and 2,1 »> L
SimilarL__, (4)=0
m Machine 2 is selected : M, = {1, 2}
Crax {(1.2}) =C . {1}) + L, (2) =27 +1 =28
Disjunctive edges are added to include machine 2
Resequencing for machine 1 does not yield any improvement
m lteration 3
No further bottleneck is encountered
Lnan(3)70, Lin(4)=0
=» Overall makespan 28

(3) =1

max

machines 1 2 3 4
sequences | 1,2,3 | 2,1,3 | 2, 1 2,3

192

Omﬁ Open Shops ’#

= 02]|Cp C...>max (5p,.%p, |

m In which cases is C__, strictly greater than the right hand side of the
inequality?

m Non delay schedules

= |dle period only iff one job remains to be processed and this job is
executed on the other machine: at most on one of the two machines

m Longest Alternate Processing Time first (LAPT)

Whenever a machine is free start processing the job that has the
longest processing time on the other machine

m The LAPT rule yields an optimal schedule for O2 || C
makespan

Cax = Max (max(P4+ p2j)’z pr ij)

j€{1 n} j=1 j=1

max

with

max

193

Omﬁ Open Shops ’#

m Assumption

P1; <Pk 5 P2 = Pk
= longest processing time belongs to operation (1, k)

LAPT: Job k is started on machine 2 at time O
= Job k has lowest priority on machine 1

m Itis only executed on machine 1 if no other job is available for
processing on machine 1

a) k is the last job to be processed on machine 1
b) k is the second to last job to be processed in machine 1 and the
last job is not available due to processing on machine 2

m Generalization: The 2(n-1) remaining operations can be processed in
any order without unforced idleness.

m No idle period in any machine — optimal schedule

194

Om;ﬁ Open Shops ’#

m Case 1: Idle period on machine 2

= job2 needs processing on machine 2 (last job on machine 2) and job | is
still processed on machine 1

= job | starts on machine 2 at the same time when job k starts on machine

1 p1k =2 p2l - machine 1 determines makespan and there is no idle time
on machine 1 — optimal schedule

m Case 2: Idle period on machine 1

= all operations are executed on machine 1 except (1, k) and job k is still
processed on machine 2

=% makespan is determined by machine 2 — optimal schedule without idle
periods

% makespan is determined by machine 1 — makespan p,, + p4,, optimal
schedule

195

Omﬁ General Heuristic Rule '#

m Longest Total Remaining Processing on Other Machines first rule
but Om || C, . is NP hard form =2 3
(LAPT is also optimal for O2 | prmp | C

m Lower bound

max)

m n
Cmax 2 maX(Jrer{Ea)n(} 21: pij ’j';r{la)n(]}z; pijj
I= J=

=% The optimal schedule matches the lower bound
The problem O2 || L, is strongly NP hard (Reduction of 3 Partitions)

M 1 1 4 2 3 :
) unnecessary increase
M 2 5 1 3 4 in makespan
M1 1 4 2 3
Nno unnecessary
M2 2 1 3 4 increase in makespan

196

Omﬁ Stochastic Models: Notation

m X; = the random processing time of job j on machine |

m 1/A; = the mean or expected value of the random variable X;

m R, =the random release date of job |
m D, =the random due date of job |

m w, = the weight (or importance factor) of job |

197

O Density and Distribution Function
m Example

f(t) A

05 [~

0.25

F(t) s
1.00 |- /—

0.75 I~
0s | /
0.25

Rt SR N R R R R R 198

i

f(£) o

Ae—)\t

The Exponentional Distribution

C(t) 4

199

Omﬁ Stochastic Dominance ’#

m X, is said to be larger in expectation than X, if E(X,) 2 E(X,).
m X, is said to be stochastically larger than X, if
P(X;>t) 2 P(X,>1) or 1-F,(t) 2 1-F,(t) for all t.
» Notation: X, z,X,

m Likelihood ratio sense

» Continuous case: X, is larger than X, in the likelihood ratio sense if
f,(t)/f,(t) is nondecreasing int, t 2 0.

» Discrete case: X, is larger than X, in the likelihood ratio sense if
P(X,=t)/P(X,=t) is nondecreasing int,t=0, 1, 2, ...
» Notation: X, 2, X,
m X, is almost surely larger than or equal X, if P(X; 2 X,) = 1.
» Implies that f, and f, may overlap at most on one point
» Notation: X, z_. X,

200

Omﬁ Stochastic Dominance

Chain of implications

Almost surely larger Larger in likelihood ratio sense

Larger in expectation é Stochastically Iarger

201

O Stochastic Dominance based on
ﬁﬁﬁ Variance

m X, is said to be larger than X, in the variance sense if
var(X,) > var(X,)
m X, is said to be more variable than X, if
jh (t)dF;(t jh (t)dF,(t) continuous case
;h(t) =1)= h(t) discrete case

= t=0
for all convex functions h.
» Notation: X, 2, X,

1 =cx

m X, is said to be symmetrically more variable than X, if f,(t) and f,(t)
are symmetric around the same mean 1/\ and

F.(t) = F,(t) for 0<st<1/A and
F.(t) < F,(t) for 1/N<t<2/\

202

O Stochastic Dominance based on
m Variance

Chain of implications

Symmetrically more variable

— More variable <

-> Larger in variance

203

Omﬁ Increasing Convex Ordering '#

m X, is said to larger than X, in the increasing convex sense if
[ndr(t)= [h(t)dF,(t) continuous case

> PO, =)= S hOP%, =1) discrete case

t=0 t=0

for all increasing convex functions h.
» Notation: X, 2., X,

1 “iex

Stochastically larger Larger in the increasing convex sense

—
I

More variable Larger in the increasing convex sense

204

O . :
mﬁ Lemma: Increasing Convex Ordering

m Two vectors of independent random variables

XM, X and X, X)
All 2n variables are independent
m Let

Z, = g%, ..., X,V)
and
ZZ = g(x'](Z)! ey Xn(2))

where g is increasing convex in each one of the n arguments.

] IfXj(1)>- XA, j=1,...,n,thenZ, 2

—icx 7N

=» Proof by induction

Z,

icx

205

Omﬁ Classes of Policies ’#

m Nonpreemptive Static List Policy

The decision maker orders the jobs at time zero according to a
priority list which does not change during the evolution of the process.
Every time a machine is freed the next job on the list is selected for
processing.

m Preemptive Static List Policy

The decision maker orders the jobs at time zero according to a
priority list which includes jobs with nonzero release dates. At any
point in time the job at the top of the list of available jobs is the one to
be processed on the machines.

206

Omﬁ Classes of Policies ’#

m Nonpreemptive Dynamic Policy
Every time a machine is freed, the decision maker is allowed to

determine which job goes next.
= Decision may depend on available information like current time, number
of waiting jobs, number of currently processed jobs...
=% Preemption is not allowed. Every job that is started has to be executed

without interruption.

m Preemptive Dynamic Policy
Every time a machine is freed, the decision maker is allowed to
determine which job goes next.
=% Preemption is allowed

207

	Scheduling Problems and Solutions
	Textbook
	Scheduling Problem
	Example 1Paper Bag Factory
	Example 2 Gate Assignments at Airport
	Example 3Tasks in a CPU
	Information Flow Diagram in a Manufacturing System
	Information Flow Diagram in a Service System
	Job Properties
	Machine Environment
	Machine Environment
	Restrictions and Constraints
	Restrictions and Constraints
	Objective Functions
	Objective Functions
	Objective Functions
	Description of a Scheduling Problem
	Classes of Schedules
	Precedence Constraints Original Schedule
	Precedence Constraints Reduced Processing Time
	Precedence Constraints Use of 3 Machines
	Active Schedule
	Example of an Active Schedule
	Semi – active Schedule
	Example of a Semi – active Schedule
	Venn Diagram of Classes of Schedules for Job Shops
	Complexity Preliminaries
	Mergesort
	Complexity Hierarchies of Deterministic Scheduling Problems
	Machine Environment
	Processing Restrictions and Constraints
	Objective Functions
	Time Complexity of Algorithms
	Problem Classification
	Partition
	3-Partition
	Proof of NP-Hardness
	Complexity of Makespan Problems
	Complexity of Maximum Lateness Problems
	Total Weighted Completion Time
	Total Weighted Completion Time
	Total Weighted Completion Time
	Total Weighted Completion Time with Chains
	Example: Total Weighted Completion Time with Chains
	Example: Total Weighted Completion Time with Chains
	Other Total Completion Time Problems
	Maximum Cost
	Algorithm: Minimizing Maximum Cost
	Minimizing Maximum Cost: Proof of Optimality
	Minimizing Maximum Cost: Proof of Optimality
	Minimizing Maximum Cost:Example
	Maximum Lateness
	Maximum Lateness
	Optimal Solution for 1 | rj | Lmax
	Optimal Solution for 1 | rj | Lmax
	Branch and Bound Applied to Minimizing Maximum Lateness
	Branch and Bound Applied to Minimizing Maximum Lateness
	Number of Tardy Jobs: 1 || ? Uj
	Algorithm for Solving 1 || ? Uj
	1 || ? Uj: Proof of Optimality
	1 || ? Uj: Proof of Optimality
	1 || ? Uj : Example
	1 || ? wjUj : Example
	Total Tardiness
	Total Tardiness
	Total Tardiness
	Minimizing Total Tardiness
	Minimizing Total Tardiness
	Minimizing Total TardinessExample
	Minimizing Total Tardiness Example
	Total Weighted Tardiness
	Total Tardiness An Approximation Scheme
	Total TardinessAn Approximation Scheme
	Total TardinessAn Approximation Scheme
	Total TardinessAn Approximation Scheme
	PTAS Minimizing Total Tardiness
	PTAS Minimizing Total TardinessExample
	Total Earliness and Tardiness
	Total Earliness and Tardiness
	Minimizing Total Earliness and Tardiness with a Loose Due Date
	Minimizing Total Earliness and Tardiness with a Tight Due Date
	Minimizing Total Earliness and Tardiness with a Tight Due Date
	Minimizing Total Earliness and Tardiness
	Minimizing Total Earliness and Tardiness
	Primary and Secondary Objectives
	Reversal of Priorities
	Reversal of Priorities
	Minimizing Total Completion Time with Deadlines
	Minimizing Total Completion Time with Deadlines
	Multiple Objectives
	Pareto-Optimal Schedule
	Pareto-Optimal Schedule
	Pareto-Optimal Solutions
	Pareto-Optimal Solutions
	Pareto-Optimal Solutions
	Pareto-Optimal Solutions
	Pareto-Optimal Solutions
	Parallel Machine Models
	Pm || Cmax
	Proof of the Bound
	Proof of the Bound
	A Worst Case Example for LPT
	Other Makespan Results
	Heuristics Algorithms
	Pm | pj = 1, tree | Cmax
	CP for P2|pj=1,prec|Cmax
	LNS for P2|pj=1,prec|Cmax
	Pm | pj = 1, Mj | Cmax
	Pm | pj = 1, Mj | Cmax
	Makespan with Preemptions
	Makespan with Preemptions
	LRPT Rule
	Vector Majorization
	LRPT Property
	Result of the LRPT Rule
	LRPT in Discrete Time
	LRPT in Continuous Time
	Lower Bound for Uniform Machines
	LRPT-FM
	Application of LRPT-FM
	?Cj without Preemptions (1)
	?Cj without Preemptions (2)
	?wjCj without Preemptions
	Pm | prec | ? Cj
	Other ?Cj Problems
	Example Rm||?Cj
	?Cj with Preemptions (1)
	?Cj with Preemptions (2)
	?Cj with Preemptions (3)
	?Cj with Preemptions (4)
	Application of the SRPT-FM Rule
	Due – Date Related Objectives
	Example P2 | prmp | Lmax
	Flow Shops
	Unlimited Intermediate Storage
	Directed Graph for Fm|prmu|Cmax
	Example F4|prmu|Cmax
	Directed Graph in the Example
	Gantt Chart in the Example
	Reversibility
	Example Reversibility (1)
	Example Reversibility (2)
	Example Reversibility (3)
	F2||Cmax
	Proof of Johnson’s Rule (1)
	Proof of Johnson’s Rule (2)
	Fm | prmu | Cmax
	Graphical Description of ?ik
	MIP for Fm | prmu | Cmax (1)
	MIP for Fm | prmu | Cmax (2)
	F3||Cmax
	Proportionate Flow Shop
	F2 || ? Cj
	Slope Heuristic
	Flow Shops with Limited Intermediate Storage (1)
	Flow Shops with Limited Intermediate Storage (2)
	Directed Graph for the Computation of the Makespan
	Graph Representation of a Flow Shop with Blocking
	Example: A Two Machine Flow Shop with Blocking and the TSP (1)
	Example: A Two Machine Flow Shop with Blocking and the TSP (2)
	Special Cases of Fm | block | Cmax
	SPT- LPT Schedule
	Profile Fitting (PF)
	Application of the PF Heuristic
	Flexible Flow Shop with Unlimited Intermediate Storage (1)
	Example: Minimizing Makespan with LPT
	Flexible Flow Shop with Unlimited Intermediate Storage (2)
	Job Shops
	Representation as a Disjunctive Graph G
	Directed Graph for Job Shop
	Feasible Schedule
	Disjunctive Programming Formulation
	Example: Disjunctive Programming Formulation
	Branch and Bound Method to Determine all Active Schedules
	Generation of all Active Schedules
	Generation of all Active Schedules
	Lower Bound for Makespan at v’
	Application of Branch and Bound
	Application of Branch and BoundLevel 1
	Schedule Operation (1,1) first
	Schedule Operation (1,1) first
	Schedule Operation (1,1) first
	Schedule Operation (1,1) first
	Schedule Operation (1,3) first
	Application of Branch an BoundLevel 2
	Branching Tree
	Continuation of the Procedure yields
	Gantt Chart for J4 || Cmax
	Shifting Bottleneck Heuristic
	Shifting Bottleneck Heuristic
	Shifting Bottleneck Heuristic
	Shifting Bottleneck Heuristic
	Open Shops
	Open Shops
	Open Shops
	General Heuristic Rule
	Stochastic Models: Notation
	Density and Distribution Function Example
	The Exponentional Distribution
	Stochastic Dominance
	Stochastic Dominance
	Stochastic Dominance based on Variance
	Stochastic Dominance based on Variance
	Increasing Convex Ordering
	Lemma: Increasing Convex Ordering
	Classes of Policies
	Classes of Policies

