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Textbook

Scheduling – Theory, Algorithms, and Systems 
Michael Pinedo
2nd edition, 2002 
Prentice-Hall Inc.
Pearson Education 

The lecture is based on this textbook.

These slides are an extract from this book. They are to be used only 
for this lecture and as a complement to the book. 
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Scheduling Problem

Constraints
Tasks Time 

Resources
(Jobs) (Machines)

Objective(s)

Areas:
Manufacturing and production
Transportations and distribution
Information - processing
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Example 1 Paper Bag Factory

different types of paper bags
3 production stages

printing of the logo
gluing of the side
sewing of one or both ends

several machines for each stage
differences in speed and function
processing speed and processing quantity
setup time for a change of the bag type

due time and late penalty
minimization of late penalties, setup times
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Example 2 
Gate Assignments at Airport

different types of planes (size)
different types of gates (size, location)
flight schedule

randomness (weather, take off policy)
service time at gate

deplaning of passengers
service of airplane
boarding of passengers

minimization of work for airline personnel
minimization of airplane delay
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Example 3 Tasks in a CPU

different applications
unknown processing time
known distributions (average, variance)
priority level

multitasking environment
preemption

minimization of the sum of expected weighted completion times
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Information Flow Diagram in a 
Manufacturing System

Production planning,                     Orders, demand forecasts
master scheduling

Capacity Quantities, 
status due dates

Material requirements,
planning,                                                Material requirements

capacity planning

Scheduling                               Shop orders, 
constraints                              release dates

Scheduling
and

rescheduling                                    Detailed scheduling
Schedule
performance Schedule

Dispatching

Shop
status                          Shopfloor

management

Data collection                            Job loading

Shopfloor
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Information Flow Diagram in a Service 
System

Database                                     Forecasting

Scheduling                 Yield
management

Customer

Status (history)

Prices rules

ForecastsData

Accept/
reject

(conditions)
Place order,

make reservations
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Job Properties

pij: processing time of job j on machine i 
(pj: identical processing time of job j on all machines)

rij: release date of job j (earliest starting time)
dj: due date of job j (completion of job j after dj results in a late penalty) 

: deadline (  must be met)
wj: weight of job j (indicates the importance of the job)

jd jd
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Machine Environment

1 : single machine
: m identical machines in parallel
: m machines in parallel with different speeds
: m unrelated machines in parallel
: flow shop with m machines in series

each job must be processed on each machine using the same route.
queues between the machines 

FIFO queues, see also permutation flow shop
: flexible flow shop with c stages in series and several
identical machines at each stage, 
one job needs processing on only one (arbitrary) machine 
at each stage.

mP
mQ
mR
mF

cFF
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Machine Environment

: job show with m machines with a separate
predetermined route for each job

A machine may be visited more than once by a job. 
This is called recirculation.

: flexible job shop with c stages and several identical
machines at each stage, see FFc

: Open shop with m machines
Each job must be processed on each machine.

mJ

cFJ

mO
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Restrictions and Constraints

release dates, see also job properties 
sequence dependent setup times

Sijk : setup time between job j and job k on machine i
(Sjk : identical setup times for all machines)
(S0j : startup for job j)
(Sj0 : cleanup for job j)

preemption (prmp)
The processing of a job can be interrupted and later resumed (on
the same or another machine).

precedence constraints (prec)
Certain jobs must be completed before another job can be started.

representation as a directed acyclic graph (DAG)
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Restrictions and Constraints

machine breakdowns (brkdwn)
machines are not continuously available: For instance, m(t) identical 
parallel machines are available at time t.

machine eligibility restrictions (Mj )
Mj denotes the set of parallel machines that can process job j (for Pm 
and Qm ).

permutation (prmu), see Fm

blocking (block)
A completed job cannot move from one machine to the next due to 
limited buffer space in the queue. Therefore, it blocks the previous 
machine (Fm , FFc )

no – wait (nwt)
A job is not allowed to wait between two successive executions on 
different machines (Fm , FFc ).

recirculation (recirc)
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Objective Functions

Completion time of job j: Cj

Lateness of job j: Lj = Cj – dj 

The lateness may be positive or negative.

Tardiness: Tj = max (Lj , 0)

1,  if Cj > dj, 

Number of late jobs: Uj =                         
0, otherwise
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Objective Functions

jL jT jU

Makespan: Cmax =max (C1 ,...,Cn )
completion time of the last job in the system

Maximum lateness: Lmax =max (L1,..., Ln )

1

jC jC jC

jd jdjd
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Objective Functions

Total weighted completion time: Σ wj Cj 

Total weighted flow time: (Σ wj ( Cj – rj )) = Σ wj Cj – Σ wj rj 

const.
Discounted total weighted completion time:

(Σ wj (1 – e -rCj )) 0<r<1
Total weighted tardiness: Σ wj Tj

Weighted number of tardy jobs: Σ wj Uj

Regular objective functions:
non decreasing in C1 ,...,Cn 

Earliness: Ej = max (-Lj , 0)
non increasing in Cj

Σ Ej + Σ Tj  , Σ wj‘ Ej + Σ wj‘‘ Tj    not regular obj. functions
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Description of a Scheduling Problem

α | β | γ

machine environment objective (to be 
minimized)

constraints,
processing,

characteristics
Examples:

Paper bag factory FF3 | rj , sjk| Σ wj Tj

Gate assignment Pm | rj , Mj | Σ wj Tj

Tasks in a CPU l | rj , prmp | Σ wj Cj

Traveling Salesman l | sjk  | Cmax
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Classes of Schedules

Nondelay (greedy) schedule
No machine is kept idle while a task is waiting for processing.

An optimal schedule need not be nondelay!

Example: P2 | prec | Cmax

15882232778pj

10987654321jobs 
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Precedence Constraints 
Original Schedule

6 5 37

2 8 9

104

1

15882232778pj

10987654321jobs

0 10 20 30

1 10

3

5 8

4

6 7 9

2

= job completed



20

Precedence Constraints 
Reduced Processing Time

8

2

3

9

10

14771121667pj

10987654321jobs

0 10 20 30

1 10

3

5 8

4

6 7 9

2

6

1

4 5 7

= job completed

The processing time of each job is 
reduced by 1 unit.
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Precedence Constraints 
Use of  3 Machines

6

5 3

7

2

8

9

104

1

15882232778pj

10987654321jobs

0 10 20 30

1 10

3

5 8

4

6 7 9

2

= job completed

3 machines are used instead of 2 with 
the original processing times
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Active Schedule

It is not possible to construct another schedule by changing 
the order of processing on the machines and having at 
least one task finishing earlier without any task finishing 
later.

There is at least one optimal  and active schedule for Jm||γ if 
the objective function is regular. 

Example :
Consider a job shop with three machines and two jobs. 

Job 1 needs 1 time unit on machine 1 and 3 time units on machine 2. 
Job 2 needs 2 time units on machine 3 and 3 time units on machine 2. 
Both jobs have to be processed last on machine 2. 
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Example of an Active Schedule 

Machine 1     1

Machine 2                                  2                    1  

Machine 3          2

0 2 4 6 8             t

It is clear that this schedule is active as reversing the sequence of the two 
jobs on machine 2 postpones the processing of job 2. However, the 
schedule is neither nondelay nor optimal. Machine 2 remains idle until 
time 2 while there is a job available for processing at time 1. 
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Semi – active  Schedule

No task can be completed earlier without changing the order of 
processing on any one of the machines.

Example:
Consider again a schedule with three machines and two jobs. The 

routing of the two jobs is the same as in the previous example.
The processing times of job 1 on machines 1 and 2 are both equal 
to 1.
The processing times of job 2 on machines 2 and 3 are both equal 
to 2.



25

Example of a Semi – active Schedule

Machine 1     1

Machine 2                              2            1  

Machine 3          2

0 2 4 6 8             t

Consider the schedule under which job 2 is processed on machine 2 
before job 1. This implies that job 2 starts its processing on machine 
2 at time 2 and job 1 starts its processing on machine 2 at time 4. 
This schedule is semi-active. However, it is not active as job 1 can be 
processed on machine 2 without delaying the processing of job 2 on 
machine 2. 
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Venn Diagram of Classes of Schedules 
for Job Shops

Nondelay Active

Semi-active

X

All Schedules

X

Optimal Schedules

A Venn diagramm of the three classes of nonpreemptive schedules;
the nondelay schedules, the active schedules, and the semi-active schedules
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Complexity Preliminaries 

T(n)=O(f(n)) if T(n)<c⋅f(n) holds for some c>0 and all n>n0.

Example               1500 + 100n2 + 5n3=O(n3)

Input size of a simple scheduling problem
n log2(max pj)

number of jobs maximal processing time
In binary encoding
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Mergesort

6 4 8 1 3 9 67

4,6 1,8 3,7 6,9

1,4,6,8 3,6,7,9

1,3,4,6,6,7,8,9

n input values at most n log2 n comparison steps

time complexity of mergesort: O(n log n)



29

Complexity Hierarchies of Deterministic 
Scheduling Problems

Some problems are special cases of other problems:
Notation:   α1 | β1 | γ1   ∝ (reduces to)   α2 | β2 | γ2

Examples:
1 || Σ Cj ∝ 1 || Σ wj Cj  ∝ Pm || Σ wj Cj  ∝ Qm | prec | Σ wj Cj 

Complex reduction cases: 
α | β | Lmax ∝ α | β | Σ Uj

α | β | Lmax ∝ α | β | Σ Tj

Variation of dj and logarithmic search
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Machine Environment

Rm

Qm

FJc

FFc Jm

Pm Fm Om

1
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Processing Restrictions and Constraints

rj sjk prmp     prec       brkdwn      Mj block    nwt    recrc

0        0          0           0              0           0   0         0         0
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Objective Functions

Σwj Tj Σwj Uj

Σwj Cj ΣTj ΣUj

ΣCj Lmax

Cmax
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Time Complexity of Algorithms

Easy (polynomial time complexity): 
There is an algorithm that optimally solves the problem with time 
complexity O((n log(max pj))k) for some fixed k.

NP-hard in the ordinary sense 
(pseudo polynomial time complexity):
The problem cannot be optimally solved by an algorithm with 
polynomial time complexity but with an algorithm of time complexity 
O((n max pj)k).

NP-hard in the strong sense:
The problem cannot be optimally solved by an algorithm with pseudo 
polynomial complexity. 



34

Problem Classification

Deterministic scheduling problems

polynomial NP – hard  
time solution

NP-hard     strongly
ordinary sense NP-hard 

pseudo
polynomial solution
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Partition

Given positive integers a1,…, at and                        ,

do there exist two disjoint subsets S1 and S2 such that 

for i=1,2?

∑=
=

t
jab

1j2
1

∑
∈

=
iSj

j ba

Partition is NP-hard in the ordinary sense.
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3-Partition

Given positive integers a1,…, a3t, b with

,           j = 1,… , 3t,

and

do there exist t pairwise disjoint  three element subsets Si ⊂ {1,… , 3t} 
such that 

for i=1,… , t?

bab
<<

∑ =j ba

24 j

tba
t3

1j
j =∑

=

∈ iSj

3-Partition is strongly NP-hard.
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Proof of NP-Hardness

A scheduling problem is NP-hard in the ordinary sense if
partition (or a similar problem) can be reduced to this problem with a 
polynomial time algorithm and
there is an algorithm with pseudo polynomial time complexity that solves 
the scheduling problem.

A scheduling problem is strongly NP-hard if
3-partition (or a similar problem) can be reduced to this problem with a 
polynomial time algorithm.
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Complexity of Makespan Problems

FFc || Cmax Jm || Cmax

P2 || Cmax F2 || Cmax

1 || Cmax

Hard

Easy
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Complexity of Maximum Lateness 
Problems

1 | rj | Lmax 1 | rj , prmp | Lmax

1 || Lmax 1 | prmp | Lmax

Pm || Lmax

Hard

Easy
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Total Weighted Completion Time

1 || Σ wj Cj : Schedule the jobs in Smith order       .

The Weighted Shortest Processing Time first (WSPT) rule is optimal for 1 
|| Σ wj Cj.

Proof by contradiction and localization:
If the WSPT rule is violated then it is violated by a pair of neighboring task 

h and k.

j

j

p
w
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Total Weighted Completion Time

t
h              k

S1: Σ wj Cj = ...+ wh(t+ph) + wk(t + ph + pk)
t

k h
S2: Σ wj Cj = ... + wk(t+pk)     + wh(t + pk + ph)

Difference between both schedules S1 und S2:
wk ph – wh pk > 0   (improvement by exchange)

The complexity is dominated by sorting           O (n log(n))
h

h

k

k

p
w

p
w

>
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Total Weighted Completion Time

Use of precedence constraints: 1| prec | Σ wj Cj

Only independent chains are allowed at first!

Chain of jobs 1, ... , k

l* satisfies

δ factor
of this
chain

l* determines the δ-factor of the chain 1, ... , k



















=

∑

∑

∑

∑

=

=

≤≤

=

=
l

1j
j

l

1j
j

kl1*l

1j
j

*l

1j
j

p

w
max

p

w
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Total Weighted Completion Time with 
Chains 

Whenever the machine is available, select among the remaining chains 
the one with the highest δ-factor.

Schedule all jobs from this chain without interruption until the job that 
determines the δ-factor.

Proof concept
There is an optimal schedule that processes 
all jobs 1, ... , l* in succession + 
Pairwise interchange of chains
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Example: Total Weighted Completion 
Time with Chains

Consider the following two chains:
1      2       3       4

and
5      6      7     

The weights and processing times of the jobs are given in the following 
table.

18178812186wj

10845663pj

7654321jobs 
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Example: Total Weighted Completion 
Time with Chains

δ-factor of first chain                                           Job 2   

δ-factor of second chain                                        Job 6 
Jobs 1 and 2 are scheduled first.

δ-factor of remaining part of first chain                  Job 3
Jobs 5 and 6 are scheduled next.

Job 3 is scheduled next.

Job 7 is scheduled next and finally job 4

9
24)63()186( =++

9
24

12
25)84()178( <=++

12
25

6
12

<

6
12

10
18

p
w

7

7 <=

10
18

5
8

p
w

4

4 <=
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Other Total Completion Time Problems

1 | prec | Σ wj Cj is strongly NP hard for arbitrary
precedence constraints.

1 | rj ,prmp | Σ wj Cj is strongly NP hard.
The WSPT (remaining processing time) rule is not optimal.
Example: Select another job that can be completed before the release 
date of the next job.

1 | rj ,prmp | Σ Cj  is easy.
1 | rj | Σ Cj  is strongly NP hard.
1 || Σ wj (1 – e -rCj ) can be solved optimally with the Weighted Discounted 
Shortest Processing Time first (WDSPT) rule:

j

j

rp

rp
j

e1
ew
−

−

−

⋅
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Maximum Cost

General problem:  1 | prec | hmax

hj (t): nondecreasing cost function
hmax = max (h1 (C1), ... , hn (Cn))

Backward dynamic programming algorithm
makespan Cmax = Σ pj 

J: set of all jobs already scheduled (backwards) in

Jc = {1, ... , n} \ J: set of jobs still to be scheduled
J‘ ⊆ Jc : set jobs that can be scheduled under consideration of 
precedence constraints.

∑
∈

−
Jj

maxjmax ]C,pC[
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Algorithm: 
Minimizing Maximum Cost 

Step 1 Set J = ∅,  let Jc = {1, ... , n} and J‘ be the set of all jobs
with no successors.

Step 2 Let              be such thatJ'j*

Add j* to J.
Delete j* from Jc.
Modify J‘ to represent the new set of schedulable jobs.

Step 3 If Jc = ∅ then STOP otherwise go to Step 2.

This algorithm yields an optimal schedule for 1 | prec | hmax.

∈

















=










∑∑
∈∈∈ cc Jk

kj
J'jJj

jj* phminph
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Minimizing Maximum Cost: 
Proof of Optimality

Assumption: The optimal schedule Sopt and the schedule S of the 
previous algorithm are identical at positions k+1,... , n.

At position k with completion time t, there is job j** in Sopt and job j* with 
hj**(t) ≥ hj*(t) in S.

Job j* is at position k‘ < k in Sopt.

Create schedule S’ by removing job j* in Sopt and putting it at position k.
hj(Cj) does not increase for all jobs {1, ... , n} \ {j*}.
hj*(t) ≤ hj**(t) ≤ hmax(Sopt) holds due to the algorithm.

Therefore, schedule S’ is optimal as hmax(S’)≤hmax(Sopt) holds.
An optimal schedule and schedule S are identical at positions k, k+1, ..., n.
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Minimizing Maximum Cost: 
Proof of Optimality

hj(Cj)

Cj*,Cj**
j* j**

hj**

hj*

hj(Cj)

Cj*,Cj**j*j**

hj*

hj**
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Minimizing Maximum Cost:
Example

532pj

101.2 Cj 1 + Cj hj (Cj )

321jobs 

Cmax = 2+3+5 = 10

h3(10) = 10 < h1(10) = 11 < h2(10) = 12
Job 3 is scheduled last.

h2(10 – p3) = h2(5) = 6 = h1(5)

Optimal schedules 1,2,3 and 2,1,3
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Maximum Lateness

1 || Lmax is a special case of 1 | prec | hmax.
hj = Cj – dj Earliest Due Date first

1 | rj | Lmax is strongly NP complete. 

Proof: 
Reduction of 3-Partition to 1 | rj | Lmax 

integers a1, ... , a3t, b
n = 4t –1 jobs

rj = j·b + (j –1), pj = 1, dj = j·b + j, ∀ j = 1,..., t –1
rj = 0, pj = aj – t +1, dj = t·b + (t – 1), ∀ j =  t,..., 4t– 1  

2
ba

4
b

j << bta
3t

1j
j ⋅=∑

=
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Maximum Lateness

Lmax =0 if every job j∈{1,..., t – 1} can be processed from rj to rj + pj = 
dj and all other jobs can be partitioned over t intervals of length b.

3 – Partition has a solution.

r t-2 d t-2 r t-1 d t-1r1 d1 r2 d2 r3 d3

0 b b+1 2b+1 2b+2 3b+2 3b+3 tb+t–1

1 | rj | Lmax is strongly NP – hard. 
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Optimal Solution for 1 | rj | Lmax

Optimal solution for 1 | rj | Lmax: Branch and bound method
Tree with n+1 levels

Level 0: 1 root node
Level 1: n nodes: 

A specific job scheduled at the first position of
the schedule.

Level 2: n(n-1) nodes: 
from each node of level 1  there are n – 1

edges to nodes of level 2: 
a second specific job scheduled at the second
position of the schedule.

n!/(n-k)! nodes at level k: 
each node specifies the first k positions of the schedule.
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Optimal Solution for 1 | rj | Lmax

Assumption:

J: jobs that are not scheduled at the father node of level k – 1 
t: makespan at the father node of level k – 1
Job jk need not be considered at a node of level k with this specific father 
at level k – 1.

Finding bounds:
If there is a better schedule than the one generated by a branch then the 
branch can be ignored.
1 | rj , prmp | Lmax can be solved by the 

preemptive Earliest Due Date (EDD) first rule.
This produces a nondelay schedule.
The resulting schedule is optimal if it is nonpreemptive.

)p)r(max(t,minr ll
J

jk
+≥

∈l
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Branch and Bound Applied to 
Minimizing Maximum Lateness

11
3
6
3

524pj

510rj

10128dj 

421jobs 

Level 1   (1, ?, ?, ?) (2, ?, ?, ?)    (3, ?, ?, ?)    (4, ?, ?, ?)
Disregard (3, ?, ?, ?) and (4, ?, ?, ?) as job 2 can be completed at 
r3 and r4 at the latest.

Lower bound for node (1, ?, ?, ?):

Lower bound for node (2, ?, ?, ?):

0 18
2 1 4 3 Lmax = 7

1 3 4 3 2
0 4 5 10 15 17

Lmax = 5

1 3 127
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Branch and Bound Applied to 
Minimizing Maximum Lateness

Lower bound for node (1, 2, ?, ?): 
1, 2, 3, 4 (nonpreemptive, Lmax = 6)
Disregard (2, ?, ?, ?)

Lower bound for node (1, 3, ?, ?):
1, 3, 4, 2 (nonpreemptive, Lmax = 5)                     optimal
Disregard (1, 2, ?, ?)

Lower bound for node (1, 4, ?, ?):
1, 4, 3, 2 (nonpreemptive, Lmax = 5) optimal

A similar approach can be used for 1 | rj , prec | Lmax.
The additional precedence constraints may lead to less nodes in the 
branch and bound tree.
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Number of Tardy Jobs: 1 || Σ Uj

The jobs are partitioned into 2 sets.
set A: all jobs that meet their due dates 

These jobs are scheduled according to the EDD rule.
set B: all jobs that do not meet their due dates

These jobs are not scheduled!

The problem is solved with a forward algorithm. 
J:  Jobs that are already scheduled
Jd: Jobs that have been considered and are assigned to set B
Jc: Jobs that are not yet considered
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Algorithm for Solving 1 || Σ Uj

Step 1 Set J = ∅, Jd = ∅, and Jc = {1, ... , n}.

Step 2 Let j* denote the job that satisfies                     .
Add j* to J.
Delete j* from Jc. 
Go to Step 3.

Step 3 If                     then go to Step 4,

otherwise
let k* denote the job which satisfies                      .
Delete k* from J.
Add k* to Jd.

Step 4 If Jc = ∅ then STOP, otherwise go to Step 2.

j*
Jj

j dp ≤∑
∈

)(pmaxp j
Jj

*k
∈

=

)(dmind j
cJj

*j
∈

=
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1 || Σ Uj: Proof of Optimality

The computational complexity is determined by sorting O(n·log(n)).

We assume that all jobs are ordered by their due dates.
d1 ≤ d2 ≤ ... ≤ dn

Jk  is a subset of jobs {1, ... , k} such that
(I) it has the maximum number Nk of jobs in {1, ... ,k} completed by their 

due dates,
(II) of all sets with Nk jobs in {1, ... ,k} completed by their due dates Jk is 

the set with the smallest total processing time.

Jn corresponds to an optimal schedule.
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1 || Σ Uj: Proof of Optimality

Proof by induction
The claim is correct for k=1.

We assume that it is correct for an arbitrary k.

1. Job k+1 is added to set Jk and it is completed by its due date. 
Jk+1 = Jk ∪ {k+1} and |Jk+1 |= Nk+1=Nk+1.

2. Job k+1 is added to set Jk and it is not completed on time. 
The job with the longest processing time is deleted
Nk+1 = Nk

The total processing time of Jk is not increased. 
No other subset of {1, ... ,k+1} can have Nk on-time completions and a 
smaller processing time.
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1 || Σ Uj : Example

18
4
3

19
6
4

687pj

21179dj 

521jobs 

Job 1 fits:      J1 = {1}
Job 2 fits: J2 = {1, 2}
Job 3 does not fit: J3 = {1, 3 }
Job 4 fits: J4 = {1, 3, 4}
Job 5 does not fit: J5 = {3, 4, 5}

schedule order 3, 4, 5, (1, 2) Σ Uj = 2

1 || Σ wjUj is  NP-hard in the ordinary sense.
This is even true if all due dates are the same: 1 |dj=d| Σ wjUj

Then the problem is equivalent to the knapsack problem.
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1 || Σ wjUj : Example

Heuristic approach: Jobs are ordered by the WSPT rule (wj / pj).

The ratio may be very large.

Example: WSPT: 1, 2, 3 Σ wjUj = 89
OPT: 2, 3, 1 Σ wjUj = 12

∑ (WSPT)Uw jj

∑ (OPT)Uw jj

100100100dj

89
90
3

911pj

912wj 

21jobs 
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Total Tardiness

1 || Σ Tj : NP hard in the ordinary sense.
There is a pseudo polynomial time algorithm to solve the problem.

Properties of the solution:

1. If pj ≤ pk and dj ≤ dk holds then there exists an optimal sequence in 
which job j is scheduled before job k.

This is an Elimination criterion or Dominance result.
A large number of sequences can be disregarded.
⇒ New precedence constraints are introduced.
⇒ The problem becomes easier.
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Total Tardiness

2 problem instances with processing times p1, ..., pn

First instance: d1, ..., dn

C’k: latest possible completion time of job k in an optimal 
sequence (S’)

Second instance: 
d1, ..., dk-1 , max{dk ,C’k} dk+1, ..., dn

S’’:  an optimal sequence 
Cj’’: completion time of job j in sequence S’’

2. Any sequence that is optimal for the second instance is optimal for 
the first instance as well.
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Total Tardiness

Assumption: d1 ≤ ... ≤dn and  pk = max (p1, ... , pn)
kth smallest due date has the largest processing time.

3. There is an integer δ, 0  ≤ δ ≤ n – k such that there is an optimal 
sequence S in which job k is preceded by all other jobs j with j ≤ k+δ
and followed by all jobs j 
with j > k+δ.

An optimal sequence consists of
1. jobs 1, ..., k-1, k+1, ..., k+δ in some order
2. job k
3. jobs k+ δ+1, ... , n in some order

The completion time of job k is given by                        . ∑= jk p)(δC
+≤ δkj
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Minimizing Total Tardiness

J(j, l, k): all jobs in the set {j, ..., l} with a processing time ≤ pk but job k 
is not in J(j, l, k).

V(J(j, l, k), t) is the total tardiness of J(j, l, k) in an optimal sequence 
that starts at time t.

Algorithm: Minimizing Total Tardiness
Initial conditions: V(∅, t) = 0

V({j}, t) = max (0, t+ pj –dj)

Recursive relation:

where k‘ is such that

Optimal value function: V({1, ..., n},0)

)))(C),'k,l,1'k(J(V)d)(C,0max()t),'k,'k,j(J(V(min)t),k,l,j(J(V 'k'k'k δ+δ++−δ+δ+=
δ

))k,l,j(J'jpmax(p 'j'k ∈=
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Minimizing Total Tardiness

At most O(n³) subsets J(j, l, k) and Σ pj points in t
O(n³·Σ pj ) recursive equations

Each recursion takes O(n) time
Running time O(n4 Σ pj )

polynomial in n           pseudo polynomial

Algorithm PTAS Minimizing Total Tardiness
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Minimizing Total Tardiness
Example

1308314779121pj

337336266266260dj

54321jobs 

k=3 (largest processing time) ⇒ 0 ≤ δ ≤ 2 = 5 – 3 

V(J(1, 3, 3), 0) + 81 + V(J(4, 5, 3), 347),  δ=0
V({1, 2, ..., 5}, 0)=min     V(J(1, 4, 3), 0) +164 + V(J(5, 5, 3), 430), δ=1

V(J(1, 5, 3), 0) + 294 + V(∅, 560), δ=2

V(J(1, 3, 3), 0) = 0 for sequences 1, 2 and 2, 1

V(J(4, 5, 3), 347) = 347 +83 – 336 +347 + 83 +130 – 337 = 317
for sequence 4, 5
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Minimizing Total Tardiness 
Example

V(J(1, 4, 3), 0) = 0 for sequences 1, 2, 4 and 2, 1, 4

V(J(5, 5, 3), 430) = 430 + 130 – 337 =223

V(J(1, 5, 3), 0) = 76 for sequences 1, 2, 4, 5 and 2, 1, 4, 5

0 + 81 + 317
V({1, ..., 5}, 0) = min         0 + 164 + 223    = 370

76 + 294 + 0

1, 2, 4, 5, 3 and 2, 1, 4, 5, 3 are optimal sequences. 
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Total Weighted Tardiness 

1 || Σ wjTj is strongly NP complete.
Proof by reduction of 3 – Partition

Dominance result
If there are two jobs j and k with  dj ≤ dk , pj ≤ pk and wj ≥ wk,

then there is an optimal sequence in which job j appears before job k.

The Minimizing Total Tardiness algorithm can solve this problem if 
wj ≤ wk holds for all jobs j and k with pj ≥ pk.
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Total Tardiness 
An Approximation Scheme

For NP – hard problems, it is frequently interesting to find in polynomial 
time a (approximate) solution that is close to optimal.

Fully Polynomial Time Approximation Scheme A for 1 || Σ Tj :

optimal schedule

The running time is bounded by a polynomial (fixed degree) in 
n and        . 

∑∑ ε+≤ )OPT(T)1()A(T jj

ε1
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Total Tardiness
An Approximation Scheme

a) n jobs can be scheduled with 0 total tardiness iff (if and only if) the 
EDD schedule has 0 total tardiness.

maximum tardiness of any job in the EDD schedule

∑∑ ⋅≤≤≤ (EDD)Tn(EDD)T(OPT)T(EDD)T maxjjmax
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Total Tardiness
An Approximation Scheme

b) V(J,t): Minimum total tardiness of job subset J assuming processing 
starts at t.

There is a time t* such that 
V(J, t)=0   for   t ≤ t* and
V(J, t)>0   for   t > t*
⇒ V(J, t* + δ) ≥ δ for δ ≥ 0
The pseudo polynomial algorithm is used to compute V(J, t) for 

Running time bound O(n5 · Tmax(EDD))

(EDD)Tntt*}max{0, max⋅≤≤



75

Total Tardiness
An Approximation Scheme

c) Rescale                     and                     with some factor K.

S is the optimal sequence for rescaled problem.
∑ Tj*(S) is the total tardiness of sequence S for processing times 
K·p‘j≤ pj and due dates dj.
∑ Tj(S) is the total tardiness of sequence S for pj < K·(p‘j + 1) and dj.

Select

 Kpp' jj = Kdd' jj =

∑ ∑∑ ∑ +
⋅+<≤≤

2
1)n(nK(S)T(S)T(OPT)T(S)T *

jjj
*
j

∑ ∑ +
⋅<−

2
1)n(nK(OPT)T(S)T jj

(EDD)T
1)n(n

2εK max⋅
+

=

∑ ∑ ⋅≤− (EDD)Tε(OPT)T(S)T maxjj
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PTAS Minimizing Total Tardiness

Algorithm: PTAS Minimizing Total Tardiness

Step 1 Apply EDD and determine Tmax.
If Tmax = 0, then ∑ Tj = 0 and EDD is optimal; STOP.
Otherwise set

Step 2 Rescale processing times and due dates as follows:

Step 3 Apply Algorithm Minimizing Total Tardiness to 
the rescaled data. 

Running time complexity: O(n5·Tmax(EDD)/K)=O(n7/ε)

(EDD)T
1)n(n

2εK max







+

=

K
d

d' j
j = Kpp' jj =
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PTAS Minimizing Total Tardiness
Example

2660
1470

3

3360
830
4

13007901210pj

337020001996dj 

521jobs 

Optimal sequence 1,2,4,5,3 with total tardiness 3700.
Verified by dynamic programming

Tmax(EDD)=2230
If ε is chosen 0.02 then we have K=2.973.

Optimal sequences for the rescaled problem: 1,2,4,5,3 and 2,1,4,5,3.
Sequence 2,1,4,5,3 has total tardiness 3704 for the original data set. 
∑Tj(2,1,4,5,3) ≤ 1.02·∑Tj(1,2,4,5,3)
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Total Earliness and Tardiness

Objective Σ Ej + Σ Tj

This problem is harder than total tardiness.
A special case is considered with dj = d for all jobs j.

Properties of the special case
No idleness between any two jobs in the optimal schedule

The first job does not need to start at time 0.
Schedule S is divided into 2 disjoint sets

early completion late completion
Cj ≤ d Cj > d
job set J1 job set J2
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Total Earliness and Tardiness

Optimal Schedule:
Early jobs (J1) use Longest Processing Time first (LPT)
Late  jobs (J2) use Shortest Processing Time first (SPT)

There is an optimal schedule such that one job completes exactly
at time d.

Proof: Job j* starts before and completes after d.
If |J1| ≤ |J2| then

shift schedule to the left until j* completes at d.
If |J1| > |J2| then

shift schedule to the right until j* starts at d.
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Minimizing Total Earliness and 
Tardiness with a Loose Due Date

Assume that the first job can start its processing after t = 0 and p1 ≥ p2 ≥
... ≥ pn holds.

Step 1 Assign job 1 to set J1.
Set k = 2.

Step 2 Assign job k to set J1 and job k + 1 to set J2 or vice versa.

Step 3 If k+2 ≤ n – 1 , set k = k+2 and go to Step 2
If k+2 = n, assign job n to either set J1 or set J2 and STOP.
If k+2 = n+1, all jobs have been assigned; 
STOP.
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Minimizing Total Earliness and 
Tardiness with a Tight Due Date

The problem becomes NP-hard if job processing must start at time 0 and 
the schedule is nondelay.

It is assumed that p1 ≥ p2 ≥ ... ≥ pn holds.

Step 1 Set τ1 = d and τ2 = Σ pj - d.   
Set k = 1.

Step 2 If τ1 ≥ τ2, assign job k to the first unfilled 
position in the sequence and set τ1 = τ1 – pk.

If τ1 < τ2, assign job k to the last unfilled 
position in the sequence and set τ2 = τ2 – pk.

Step 3 If k < n, set k = k + 1 and go to Step 2.
If k = n, STOP.
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Minimizing Total Earliness and 
Tardiness with a Tight Due Date

6 jobs with d = 180

Applying the heuristic yields the following results.

20
5

96
3

22
4

2100106pj

621jobs 

1xxxxxJob 1 Placed First166180

1xxxx2Job 2 Placed Last16674

13xxx2Job 3 Placed First6674

13xx42Job 4 Placed Last66-22

13x542Job 5 Placed Last44-22

136542Job 6 Placed Last24-22

SequenceAssignmentτ2τ1
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Minimizing Total Earliness and 
Tardiness

Objective Σ w‘Ej + Σ w‘‘Tj  with dj = d.
All previous properties and algorithms for Σ Ej + Σ Tj  can be generalized 
using the difference of w‘ and w‘‘.

Objective Σ wj‘Ej + Σ wj‘‘Tj with dj = d.
The LPT/SPT sequence is not necessarily optimal in this case.
WLPT and WSPT are used instead.

The first part of the sequence is ordered in increasing order of wj / 
pj. 
The second part of the sequence is ordered in decreasing order of 
wj / pj.
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Minimizing Total Earliness and 
Tardiness

Objective Σ w‘Ej + Σ w‘‘Tj with different due dates
The problem is NP – hard. 

a) Sequence of the jobs
b) Idle times between the jobs

dependent optimization problems

Objective Σ wj‘Ej + Σ wj‘‘Tj with different due dates
The problem is NP – hard in the strong sense.

It is more difficult than total weighted tardiness.

If a predetermined sequence is given then the timing can be 
determined in polynomial time.
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Primary and Secondary Objectives

A scheduling problem is usually solved with respect to the primary
objective. If there are several optimal solutions, the best of those 
solutions is selected according to the secondary objective.

α | β | γ1 (opt), γ2

primary secondary
objective objective

We consider the problem 1 || Σ Cj (opt), Lmax.
All jobs are scheduled according to SPT.
If several jobs have the same processing time EDD is used to order 
these jobs.

SPT/EDD rule
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Reversal of Priorities

We consider the problem with reversed priorities:

1  ||  Lmax (opt), Σ Cj

Lmax is determined with EDD.
z := Lmax

Transformation of this problem:

new deadline     old due dates

zdd jj +=
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Reversal of Priorities

After the transformation, both problems are equivalent. 
The optimal schedule minimizes Σ Cj and guarantees that each job 
completes by its deadline.
In such a schedule, job k is scheduled last if

and

for all l such that                            hold.

Proof: If the first condition is not met, the schedule will miss a 
deadline.

A pairwise exchange of job l and job k (not necessarily adjacent) 
decreases Σ Cj if the second condition is not valid for l and k.

∑
=

≥
n

1j
jk pd lk pp ≥

∑
=

≥
n

1j
jk pd
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Minimizing Total Completion Time with 
Deadlines

Step 1 Set k = n, , Jc = {1, ... , n}

Step 2 Find k* in Jc such that and

for all jobs l in Jc such that .

Step 3 Decrease k by 1.
Decrease τ by pk*
Delete job k* from Jc .

Step 4 If k ≥ 1 go to Step 2, otherwise STOP.

The optimal schedule is always nonpreemptive even if preemptions are 
allowed.

∑ =
=τ

1j jp

τd *k ≥ p

τd l ≥

n

l*k p≥
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Minimizing Total Completion Time with 
Deadlines

14
2
3

18
4
4

264pj

181210

521jobs 

jd

τ = 18 ⇒ d4 = d5 = 18 ≥ τ
p4 = 4 > 2 = p5

Last job : 4
τ = 18 – p4 = 14 ⇒ d3 = 14 ≥ 14 d5 = 18 ≥ 14

p5 = 2 = p3

Either job can go in the now last position : 3
τ = 14 – p3 = 12 ⇒ d5 = 18 ≥ 12 d2 = 12 ≥ 12

p2 = 6 > 2 = p5

Next last job: 2
τ = 12 – p2 = 6 ⇒ d5 = 18 ≥ 6 d1 = 10 ≥ 12

p1 = 4 > 2 = p5

Sequence: 5 1 2 3 4
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Multiple Objectives

In a generalized approach, multiple objectives are combined in a linear 
fashion instead of using a priority ordering.

Objectives:

Problem with a weighted sum of two (or more) objectives:

The weights are normalized: 

21, γγ

2211||1 γΘ+γΘβ

121 =Θ+Θ
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Pareto-Optimal Schedule

A schedule is called pareto-optimal if it is not possible to decrease the 
value of one objective without increasing the value of the other.

and   

and                

01 →Θ 12 →Θ

1||1 2211 →γΘ+γΘβ 12 ),opt(|| γγβ

11 →Θ 02 →Θ

1||1 2211 →γΘ+γΘβ 21 ),opt(|| γγβ
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Pareto-Optimal Schedule

∑γ j1 C:

max2 : Lγ
Lmax(EDD) Lmax(SPT/EDD)
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Pareto-Optimal Solutions

Generation of all pareto-optimal solutions

Find a new pareto-optimal solution:
Determine the optimal schedule for Lmax.
Determine the minimum increment of Lmax to
decrease the minimum Σ Cj.

Similar to the minimization of the
total weighted completion time with deadlines

Start with the EDD schedule,
end with the SPT/EDD schedule.
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Pareto-Optimal Solutions

Step 1 Set r = 1
Set Lmax = Lmax(EDD) and .

Step 2 Set k = n and Jc = {1, ... , n}.
Set                        and  δ = τ.

Step 3          Find j* in Jc such that and             
for all jobs in Jc such that          .
Put job j* in position k of the sequence.

Step 4           If there is no job l such that            and            ,
go to Step 5.

Otherwise find j** such that
for all l such that            and             . 
Set                       .
If              , then           .

maxjj Ldd +=

∑ =
=

n

1j jpτ

τdj* ≥ lppj* ≥

τd <l

)(min** l
l

j dτdτ −=−

j*pp >l

*jl pp >
**

**
jdτδ −=

**δδ =

τd ≥l

τd <l

δδ <**
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Pareto-Optimal Solutions

Step 5               Decrease k by 1.
Decrease τ by pj*..
Delete job j* from Jc.

If         , go to Step 3
Otherwise go to Step 6.

Step 6 Set Lmax = Lmax  + δ.
If Lmax > Lmax(SPT/EDD), then STOP.
Otherwise set r = r + 1,         , and go to Step 2.

Maximum number of pareto – optimal points
n(n – 1)/2 = O(n²)

Complexity to determine one pareto – optimal schedule
O(n log(n))
Total complexity O(n³ log(n))

1k ≥

δdd jj +=



96

Pareto-Optimal Solutions

20
6
3

15
7
4

931pj

122730dj

521jobs 

EDD sequence                5,4,3,2,1  ⇒ Lmax (EDD) = 2
c3 = 22    d3=20

SPT/EDD sequence        1,2,3,4,5 ⇒ Lmax (SPT/EDD) =14
c5 = 26    d5 = 12
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Pareto-Optimal Solutions

132  29  22  17  145,4,3,1,296,  21
233  30  23  18  151,5,4,3,277,  32
135  32  25  20  171,4,5,3,275,  53
236  33  26  21  181,2,5,4,364,  64
338  35  28  23  201,2,4,5,362,  85

44  41  34  29  26

41  38  31  26  23

current τ + δ

Stop
3

δ

1,2,3,5,460,  116
1,2,3,4,558,  147

Pareto – optimal 
schedule(∑Cj, Lmax )Iteration r

1 || Θ1 ∑wj Cj + Θ2 Lmax
Extreme points (WSPT/EDD and EDD) can be determined in polynomial time.

The problem with arbitrary weights Θ1 and Θ2 is NP – hard. 
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Parallel Machine Models

A scheduling problem for parallel machines consists of 2 steps:
Allocation of jobs to machines
Generating a sequence of the jobs on a machine

A minimal makespan represents a balanced load on the machines.

Preemption may improve a schedule even if all jobs are released at 
the same time.

Most optimal schedules for parallel machines are nondelay.
Exception: Rm || ∑ Cj

General assumption for all problems: n21 ppp ≥≥≥ K
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Pm || Cmax

The problem is NP-hard.
P2 || Cmax is equivalent to Partition.

Heuristic algorithm: Longest processing time first (LPT) rule
Whenever a machine is free, the longest job among those not yet 
processed is put on this machine.

Upper bound:

The optimal schedule Cmax(OPT) is not necessarily known but the following 
bound holds:

3m
1

3
4

(OPT)C
(LPT)C

max

max −≤

∑
=

≥
n

1j
jmax p

m
1(OPT)C
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Proof of the Bound

If the claim is not true, then there is a counterexample with the 
smallest number n of jobs.

The shortest job n in this counterexample is the last job to start 
processing (LPT) and the last job to finish processing.

If n is not the last job to finish processing, then deletion of n does not 
change Cmax (LPT) while Cmax (OPT) cannot increase.
A counter example with n – 1 jobs

Under LPT, job n starts at time Cmax(LPT)-pn.
In time interval [0, Cmax(LPT) – pn], all machines are busy.

∑
−

=

≤−
1n

1j
jnmax p

m
1p(LPT)C
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Proof of the Bound

∑∑
=

−

=

+−=+≤
n

1j
jn

1n

1j
jnmax p

m
1)

m
1(1pp

m
1p(LPT)C

1
(OPT)C

)m1(1p
(OPT)C

p
m
1

(OPT)C

)
m
1(1p

(OPT)C
(LPT)C

3m
1

3
4

max

n

max

n

1j
j

max

n

max

max +
−

≤+
−

≤<−
∑
=

nmax 3p(OPT)C <

At most two jobs are scheduled on each machine.
For such a problem, LPT is optimal.
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A Worst Case Example for LPT

5
6

4
7

4
8

4
9

5
5

6
3

6
4

77pj

21jobs 

4 parallel machines
Cmax(OPT) = 12 =7+5 = 6+6 = 4+4+4
Cmax(LPT) = 15 = (4/3 -1/(3·4))·12

7

7

4

6

4

6

5

5

4
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Other Makespan Results

Arbitrary nondelay schedule

Pm | prec | Cmax  with 2 ≤ m < ∞ is strongly NP hard even for chains. 

Special case m ≥ n: P∞ | prec | Cmax

a) Start all jobs without predecessor at time 0.
b) Whenever a job finishes, immediately start all its successors for 

which all predecessors have been completed.
Critical Path Method (CPM)
Project Evaluation and Review Technique (PERT)

m
12

(OPT)C
(LIST)C

max

max −≤
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Heuristics Algorithms

Critical Path (CP) rule
The job at the head of the longest string of jobs in the precedence 
constraints graph has the highest priority.
Pm | pj = 1, tree  | Cmax is solvable with the CP rule.

Largest Number of Successors first (LNS)
The job with the largest total number of successors in the precedence 
constraints graph has the highest priority.
For intrees and chains, LNS is identical to the CP rule
LNS is also optimal for Pm | pj = 1, outtree | Cmax.

Generalization for problems with arbitrary processing times
Use of the total amount of processing remaining  to be done on the jobs in 
question. 
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Pm | pj = 1, tree  | Cmax

highest level Imax

N(l) number of jobs at level lLevel

5 starting jobs

root

∑
=

−+=−+
r

1k
maxmax k)1N(Ir)1H(I

4

3

2

Number of nodes at the r 
highest levels

1
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CP for P2|pj=1,prec|Cmax

for two machines

almost fully connected
bipartite graph

1

6

4

2 5

3

3
4

(OPT)C
(CPM)C

max

max ≤

2 3 4 6 3 6 4

1 5 2 1 51

2

34
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LNS for P2|pj=1,prec|Cmax

1 2 3

4 5

6

4 1 2 3

6 5

1 2 3

4 6 5

4 3

1

2
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Pm | pj = 1, Mj | Cmax

A job can only be processed on subset Mj of the m parallel machines.

Here, the sets Mj are nested.
Exactly 1 of 4 conditions is valid for jobs j and k.

Mj is equal to Mk (Mj=Mk)                                                  
Mj is a subset of Mk (Mj⊂Mk) 
Mk is a subset of Mj (Mj⊃Mk) 
Mj and Mk do not overlap.    (Mj∩Mk=ø)

Every time a machine is freed, the job is selected that can be processed 
on the smallest number of machines.

Least Flexible Job first (LFJ) rule
LFJ is optimal for P2 | pj = 1, Mj | Cmax and for Pm | pj = 1, Mj | Cmax when 
the Mj sets are nested (pairwise exchange).
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Pm | pj = 1, Mj | Cmax

Consider P4 | pj = 1, Mj | Cmax with eight jobs. The eight  Mj sets are:
M1 = {1,2}
M2 = M3 = {1,3,4}
M4 = {2}
M5 = M6 = M7 = M8 = {3,4}

Machines                 1          2           3           4
LFJ                         1          4           5      6

2                       7  8
3                   

optimal                    2           1          5           7
3           4          6   8  

LFM (Least Flexible Machine) and LFM-LFJ do not guarantee 
optimality for  this example either.   
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Makespan with Preemptions

Linear programming formulation for Pm | prmp | Cmax
The variable xij represents the total time job j spends on machine i.

Minimize Cmax subject to

∑
=

=
m

1i
jij px

∑
=

≤
n

1j
maxij Cx

∑
=

≤
m

1i
maxij Cx

0xij ≥

processing time
of job j

processing on each machine
is less than makespan

processing time 
of each job is less
than makespan

non-negative 
execution
fragments



111

Makespan with Preemptions

The solution of a linear program yields the processing of each job 
on each machine.

A schedule must be generated in addition.

Lower bound: 

Algorithm Minimizing Makespan with Preemptions
1. Nondelay processing of all jobs on a single machine without 

preemption ⇒ makespan ≤ m • C*max
2. Cutting of this schedule into m parts
3. Execution of each part on a different machine

max

n

1j
j1max *Cmp,pmaxC =









≥ ∑
=
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LRPT Rule

Longest Remaining Processing Time first (LRPT)
Preemptive version of Longest Processing Time first (LPT)
This method may generate an infinite number of preemptions.

Example:   2 jobs with p1 = p2 = 1 and 1 machine
The algorithm uses the time period ε. 

Time ε after the previous decision the situation is evaluated again. 
The makespan of the schedule is 2 while the total completion time 
is 4 – ε.

The optimal (non preemptive) total completion time is 3.

The following proofs are based on a discrete time framework. 
Machines are only preempted at integer times.
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Vector Majorization

Vector of remaining processing times at time t
(p1(t), p2(t), ..........pn(t)) =    (t).

A vector       majorizes a vector       ,                 , if 

holds for all k = 1, ..., n.

pj(t) is the jth largest element of       .

Example
Consider the two vectors        = (4, 8, 2, 4) and        = (3, 0, 6, 6).
Rearranging the elements within each vector and putting these in
decreasing order results in vectors (8, 4, 4, 2) and (6, 6, 3, 0).
It can be easily verified that                   .

p

(t)q(t)p m≥(t)q)t(p

(t)q(t)p
k

1j
(j)

k

1j
(j) ∑∑

==

≥

)t(p

)t(p )t(q

)t(q)t(p m≥
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LRPT Property

If                    then LRPT applied to        results in a larger or equal 
makespan than obtained by applying LRPT to       . 

Induction hypothesis: The lemma holds for all pairs of vectors with 
total remaining processing time less than or equal to           and

, respectively. 

Induction base: Vectors 1, 0, …, 0 and 1, 0, … 0.
After LRPT is applied for one time unit on        and       , respectively, 
then we obtain at time t+1 the vectors              and         with

and                        .

If                   , then                           .

1(t)pn

1j j −∑ =

)t(q)t(p m≥ )t(p
)t(q

1(t)qn

1j j −∑ =

)t(p )t(q
1)(tp + 1)(tq +

1(t)p1)(tp
n

1j
j

n

1j
j −≤+ ∑∑

==
1(t)q1)(tq

n

1j
j

n

1j
j −≤+ ∑∑

==

(t)q(t)p m≥ 1)(tq1)(tp m +≥+
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Result of the LRPT Rule

LPRT yields an optimal schedule for   Pm | prmp | Cmax in discrete time.
We consider only problems with more than m jobs remaining to be 

processed.

Induction hypothesis: The lemma holds for any vector        with
.

We consider a vector        with                         .

If LRPT is not optimal  for       ,  then another rule R must be optimal. 
R produces vector               with                            .

From time t+1 on, R uses LRPT as well due to our induction hypothesis.
Due to the LRPT property, R cannot produce a smaller makespan than 

LRPT.

)t(p
1N(t)pn

1j j −≤∑ =

)t(p

N(t)pn

1j j =∑ =

)t(p
1)(tq + 1)(tp1)(tq m +≥+
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LRPT in Discrete Time 

Consider two machines and three jobs 1, 2 and 3, with processing times 
8, 7, and 6.
Cmax(LRPT)=Cmax(OPT)=11.

Remember: Ties are broken arbitrarily!

0                                            5                  10               t

2 3 2 1 3

1 3 2 1
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LRPT in Continuous Time

Consider the same jobs as in the previous example.
As preemptions may be done at any point in time,
processor sharing takes place.
Cmax(LRPT)=Cmax(OPT)=10.5. 

To prove that LRPT is optimal in continuous time, multiply all processing 
times by a very large integer K and let K go to ∞.

0                                            5                10             t

1 1, 2, 3

2 2, 3 1, 2, 3
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Lower Bound for Uniform Machines
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LRPT-FM

Longest Remaining Processing Time on the Fastest 
Machine first (LRPT – FM) yields an optimal schedule with infinitely 
many preemptions for Qm | prmp | Cmax :

At any point in time the job with the largest remaining processing time is 
assigned to the fastest machine.

Proof for a discrete framework with respect to speed and time  
Replace machine  j  by  vj machines of unit speed.
A job can be processed on more than one machine in parallel, if the 
machines are derived from the same machine.

Continuous time:
All processing times are multiplied by a large number K.
The speeds of the machines are multiplied by a large number V.

The LRPT-FM rule also yields optimal schedules if applied to 
Qm | rj, prmp | Cmax.
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Application of LRPT-FM

2 machines with speed v1 = 2, v2 = 1
3 jobs with processing times 8, 7, and 6

1 1
Machine 1

1 3

2 2

0 4 8
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∑Cj without Preemptions (1)

Different argument for SPT for total completion time without preemptions 
on a single machine.

p(j): processing time of the job in position j on the machine

p(1) ≤ p(2) ≤ p(3) ≤ ..... ≤ p(n-1) ≤ p(n) must hold for an optimal schedule.

(n)1)(n(2)(1)j pp2......p1)(npnC +⋅++⋅−+⋅= −∑
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∑Cj without Preemptions (2)

SPT rule is optimal for Pm || ∑ Cj

The proof is based on the same argument as for single machines.

Dummy jobs with processing time 0 are added until n is a multiple of m.
The sum of the completion time has n additive terms with one coefficient 
each:

m coefficients with value n/m
m coefficients with value n/m – 1 

:
m coefficients with value 1

The SPT schedule is not the only optimal schedule.
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∑wjCj without Preemptions

311pj

311wj

321jobs 

2 machines  and 3 jobs

With the given values any schedule is WSPT.

If w1 and w2 are increased by ε
WSPT is not necessarily optimal.

Tight approximation factor

Pm || ∑ wj Cj is NP hard.

)2(11jj +≤
2(OPT)Cw

(WSPT)Cw

jj∑
∑
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Pm | prec | ∑ Cj

Pm | prec | ∑ Cj is strongly NP-hard. 

The CP rule is optimal for Pm | pj = 1, outtree | ∑ Cj.
The rule is valid if at most m jobs are schedulable.
t1 is the last time the CP rule is not applied but rule R.

String 1 is the longest string not assigned at t1
String 2 is the shortest of the longest strings assigned at t1
C1’ is the completion time of the last job of string 1 under R
C2’ is the completion time of the last job of string 2 under R

If C1’≥C2’+1 and machines are idle before C1’ – 1, then CP is better than 
R,  otherwise CP is as good as R.

However, the CP rule is not always optimal for intrees.
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Other ∑Cj Problems

The LFJ rule is optimal for Pm|pj=1,Mj|∑Cj when the Mj sets are nested.
The Rm||∑Cj problem can be formulated as an integer program

Although linear integer programming is NP-hard this program has a 
special structure that allows a solution in polynomial time.
xikj=1 if job j is scheduled as the kth to last job on machine i.

xikj are 0-1 integer variables.

Minimize subject to

j = 1,…, n

i = 1,…, m and k = 1,…, n

i = 1,…, m, k = 1,…, n, and j = 1,…, n

∑∑∑
= = =

m

1i

n

1j

n

1k
ikjijxkp

∑∑
= =

=
m

1i

n

1k
ikj 1x

∑
=

≤
n

1j
ikj 1x

{0,1}xikj ∈
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Example Rm||∑Cj

354P1j

398p2j

321jobs 

2 machines  and 3 jobs
The optimal solution corresponds to x121=x112=x213=1. All other xikj are 
0. The optimal schedule is not nondelay.

Machine 11 2
3 Machine 2

0 4 8
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∑Cj with Preemptions (1)

The nonpreemptive SPT rule is also optimal for Pm|prmp|∑Cj.

Qm|prmp|∑Cj can be solved by the 
Shortest Remaining Processing Time on the Fastest Machine
(SRPT-FM) rule. 

Useful lemma: There is an optimal schedule with Cj≤Ck when pj≤pk for all 
j and k. (Proof by pairwise exchange)
Under SRPT-FM, we have Cn≤Cn-1≤ … ≤C1.
Assumption: There are n machines. 

If there are more jobs than machines, then machines with speed 0
are added.
If there are more machines than jobs, then the slowest machines are 
not used.
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∑Cj with Preemptions (2)

v1Cn = pn

v2Cn + v1(Cn-1 – Cn ) = pn-1

v3Cn + v2(Cn-1 – Cn) + v1(Cn-2 – Cn-1) = pn-2

:
vnCn + vn-1(Cn-1 – Cn) + v1(C1 – C2) = p1

Adding these equations yields

v1Cn = pn

v2Cn + v1Cn-1 = pn + pn-1

v3Cn + v2Cn-1 + v1Cn-2 = pn + pn-1 + pn-2

:
vnCn+vn-1Cn-1 + ... + v1C1 = pn + pn-1 + ... + p1
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∑Cj with Preemptions (3)

Let S’ be an optimal schedule with C’n ≤ C’n-1 ≤ ... ≤ C’1 (see the lemma).
Then we have C’n ≥ pn/v1 ⇒ v1C’n ≥ pn. 

The amount of processing on jobs n and n –1 is upper bounded by 
(v1 + v2)C’n + v1(C’n-1 – C’n). ⇒ v2C’n + v1C’n-1 ≥ pn + pn-1

Similarly, we obtain
vkC’n + vk-1C’n-1 + ... + v1C’n-k+1 ≥ pn + pn-1 + ... + pn-k+1

This yields 
v1C’n ≥ v1Cn

v2C’n + v1C’n-1 ≥ v2Cn + v1Cn-1

:
vnC’n + vn-1C’n-1 + ... + v1C’1 ≥ vnCn + vn-1Cn-1 + ... + v1C1
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∑Cj with Preemptions (4)

We want to transform this system of inequalities into a new system such 
that

inequality i is multiplied by αi ≥ 0 and 
the sum of all those transformed inequalities yields ∑ C‘j ≥ ∑ Cj.
The proof is complete, if those αi exists.
αi must satisfy

v1α1 + v2α2 +  ...           + vnαn = 1
v1α2 + v2α3 + ... + vn-1αn = 1

:
v1αn = 1

Those αi exists as v1 ≥ v2 ≥ ... ≥ vn holds.



131

Application of the SRPT-FM Rule

1224

4321machines

iv

8163440454661

7654321jobs

ip

Preemptions are only allowed at integer points in time.

7 6 5 4 3 2 1

6

5

4

5

4

3

4

3

2

3

2

1

2

1

1

Machine 1

Machine 2

Machine 3

Machine 4

0 5 10 15 20 25 30 35

2C7
= 52 =C 113 =C 164=C 215=C 266 =C 357 =C

t

SRPT-FM produces an optimal 
schedule with  116Cj =∑
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Due – Date Related Objectives

Pm || Cmax ∝ Pm || Lmax (all due dates 0)
The problem is NP-hard. 

Qm | prmp | Lmax

Assume Lmax = z
Cj ≤ dj + z 
set    = dj + z (hard deadline)
Hard deadlines are release dates in the reversed problem.
Finding a schedule for this problem is equivalent to solving 
Qm | rj, prmp | Cmax

If all jobs in the reverse problem “finish” at a time not smaller than 0, then 
there exists a schedule for Qm | prmp | Lmax with Lmax≤ z.
The minimum value for z can be found by a simple search.

jd
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Example P2 | prmp | Lmax

4589dj

3

3

3

4

38pj

21jobs

Is there a feasible schedule with Lmax = 0 ? (    = dj)jd

5410rj

3

3

3

4

38pj

21jobs

Is there a feasible schedule with Cmax ≤ 9?
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Flow Shops

Each job must follow the same route. 
There is a sequence of machines.

There may be limited buffer space between neighboring machines.
The job must sometimes remain in the previous machine: Blocking.

The main objective in flow shop scheduling is the  makespan.
It is related to utilization of the machines.

If the First-come-first-served principle is in effect, then jobs cannot 
pass each other.

Permutation flow shop
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Unlimited Intermediate Storage

Permutation Schedule j

There is always an optimal schedule without job sequence changes
in the first two and last two machines.

F2|| Cmax and F3|| Cmax do not require a job sequence change in some 
optimal schedule.

n21 j,,j, K

∑
=

=
i

1l
j,lji, 11

pC

∑
=

=
k

1l
j,lj,l lk

pC

m,,1i K=

n,,1k K=

k1kkk ji,ji,j1,iji, p)C,max(CC +=
−−

m,2,i K= n,2,k K=
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Directed Graph for Fm|prmu|Cmax

1j2,p

...
2j1,p ...

...1j1,p
nj1,p

......

...

...
kji,p

1kji,p
+ ...

...... ... ...kj1,ip + 1kj1,ip
++

njm,p... ... ...
1jm,p
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Example F4|prmu|Cmax

5 jobs on 4 machines with the following processing times

52363

14344

44244

36355

j5j4j3j2j1jobs

kj,1
p

kj,2p

kj,3p

kj,4p
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Directed Graph in the Example

5 5 3 6 3

4 4 2 4 4

4 4 3 4 1

3 6 3 2 5

Critical path
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Gantt Chart in the Example

5 5

4 4

3

3

1

6

2

3

4 4

4 4 3 4

6 3 2 5

0 10 20 30
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Reversibility

Two m machine permutation flow shops with n jobs are considered with 
pij

(1) = p(2)
m+1-i,j .

pij
(1)  and pij

(2) denote the processing times of job j in the first and the 
second flow shop, respectively. 

Sequencing the jobs according to permutation j1, ... , jn in the first flow 
shop produces the same makespan as permutation jn, ... , j1 in the 
second flow shop.

The makespan does not change if the jobs traverse the flow shop in the 
opposite direction in reverse order (Reversibility).
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Example Reversibility (1)

5 jobs on 4 machines with the following processing times
(original processing times in parentheses)

3 (5)6 (2)3 (3)5 (6)5 (3)

4 (1)4 (4)2 (3)4 (4)4 (4)

1 (4)4 (4)3 (2)4 (4)4 (4)

5 (3)2 (6)3 (3)6 (5)3 (5)

j5j4j3j2j1jobs

kj,1
p

kj,2p

kj,3p

kj,4p
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Example Reversibility (2)

5 5 3 6 3 5 2 3 6 3

1 4 3 4 4

4 4 2 4 4

3 6 3 5 5

4 4 2 4 4

4 4 3 4 1

3 6 3 2 5

Original problem Reverse problem
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Example Reversibility (3)

5

5

4

4

3

3

1

62 3

4 4

4 4

3

4

6 3

2

5

0 10 3020
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F2||Cmax

F2||Cmax with unlimited storage in between the two machines
The optimal solution is always a permutation.

Johnson’s rule produces an optimal schedule.
- The job set is partitioned into 2 sets.

Set I  : all jobs with p1j ≤ p2j
Set II : all jobs with p2j < p1j

SPT (1) – LPT(2) schedule:
All jobs of Set I are scheduled first in increasing order of p1j (SPT).
All jobs of Set II are scheduled afterwards in decreasing order of p2j
(LPT).

There are many other optimal schedules besides 
SPT(1) – LPT(2) schedules.

The SPT(1) - LPT(2) schedule structure cannot be generalized to yield 
optimal schedules for flow shops with more than two machines.
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Proof of Johnson’s Rule (1)

Contradiction: Assume that another schedule S is optimal.
There is a pair of adjacent jobs j followed by k such that one of the 
following conditions hold:

Job j belongs to Set II and job k to Set I;   (Case 1)
Jobs j and k belong to Set I and p1j>p1k;    (Case 2)
Jobs j and k belong to Set II and p2j<p2k;   (Case 3)

Sequence in schedule S: job l ⇒ job j ⇒ job k ⇒ job h

Cij : completion time of job j on machine i in schedule S

C’ij : completion time of job j on machine i in the new schedule.



146

Proof of Johnson’s Rule (2)

Interchange of j and k
Starting time (C1l + p1j + p1k) of job h on machine 1 is not affected
Starting time of job h on machine 2:

C2k = max ( max ( C2l, C1l + p1j) + p2j, C1l + p1j + p1k) + p2k 
= max ( C2l + p2j + p2k, C1l + p1j + p2j + p2k, C1l + p1j + p1k + p2k)

C’2j = max (C2l + p2k + p2j, C1l + p1k + p2k + p2j, C1l + p1k + p1j + p2j)

Case 1 : p1j > p2j and p1k ≤ p2k
C1l + p1k + p2k + p2j < C1l + p1j + p1k + p2k
C1l + p1k + p1j + p2j ≤ C1l + p1j + p2j + p2k
C’2j ≤ C2k

Case 2 : p1j ≤ p2j , p1k ≤ p2k, and p1j > p1k

C1l + p1k + p2k + p2j
≤ C1l + p1j + p2j + p2k

C1l + p1k + p1j + p2j

Case 3 is similar to Case 2 (reversibility property).
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Fm | prmu | Cmax

Formulation as a Mixed Integer Program (MIP)

Decision variable xjk = 1, if job j is the kth job in the sequence.

Iik : amount of idle time on machine i between the processing of jobs
in position k and k+1

Wik: amount of waiting time of job in position k between machines i and i+1

∆ik: difference between start time of the job in position k+1 on machine i+1 
and completion time of the job in position k on machine I

pi(k): processing time of the job in position k on machine I

∆ik= Iik + pi(k+1) + Wi,k+1 = Wik + pi+1(k) + Ii+1,k
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Graphical Description of ∆ik

pi+1(k-1) pi+1(k) pi+1(k+1)

pi(k) pi(k+1)

∆ik

Iik Wi,k+1

Machine i

Wik

Machine i +1

Wik > 0 and Ii+1, k = 0
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MIP for Fm | prmu | Cmax (1)

Minimizing the makespan ≡ Minimizing the idle time on machine m

Remember :

there is only one job at position k!

∑∑
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MIP for Fm | prmu | Cmax (2)

subject to 
k = 1, ... , n

j = 1, ... , n

for k = 1, ..., n-1; i = 1, ..., m-1
Wi1 = 0 i = 1, ..., m-1 xjk ∈ {0,1} j=1, ...,n
I1k = 0 k = 1, ..., n-1 k=1, ...,m
Wik ≥ 0 i = 1, ..., m-1; k = 1, ..., n
Iik ≥ 0 i = 1, ..., m; k = 1, ..., n-1
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F3||Cmax

F3 || Cmax is strongly NP-hard. 
Proof by reduction from 3 – Partition 

An optimal solution for F3 || Cmax does not require sequence changes. 
Fm | prmu | Cmax is strongly NP – hard.

Fm | prmu, pij = pj | Cmax : proportionate permutation flow shop
The processing of job j is the same on each machine.

for

Fm | prmu, pij = pj | Cmax (independent of the sequence)
This is also true for Fm | prj = pj | Cmax.

∑
=

−+=
n

1j
n1jmax )p,...,pmax()1m(pC
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Proportionate Flow Shop

Similarities between the single machine and the proportionate 
(permutation) flow shop environments

1. SPT is optimal for 1 || ∑ Cj and Fm | prmu, pij = pj | ∑ Cj.

2. The algorithm that produces an optimal schedule for 1 || ∑ Uj also results 
in an optimal schedule for Fm | prmu, pij = pj | ∑ Uj.

3. The algorithm that produces an optimal schedule for 1 || hmax also results 
in an optimal schedule for Fm | prmu, pij = pj | hmax.

4. The pseudo-polynomial dynamic programming algorithm 1 || ∑ Tj is also 
applicable to Fm | prmu, pij = pj | ∑ Tj.

5. The elimination criteria that hold for 1 || ∑ wjT also hold for 
Fm | prmu, pij = pj | ∑ wjTj. 
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F2 || ∑ Cj

F2 || ∑ Cj is strongly NP – hard 
Fm | prmu | ∑ Cj is strongly NP – hard 
as sequence changes are not required in the optimal schedule for 2 
machines
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Slope Heuristic

Slope index Aj for job j

Sequencing of jobs in 
decreasing order of the slope 
index
Consider 5 jobs on 4 machines 
with the following processing 
times

52363

14344

44244

36355

j5j4j3j2j1jobs

kj,1p

kj,2p

kj,3p

kj,4p

A1 = -(3 x 5) – (1 x 4) + (1 x 4) + (3 x 3) = -6 

A2 = -(3 x 5) – (1 x 4) + (1 x 4) + (3 x 6) = +3

A3 = -(3 x 3) – (1 x 2) + (1 x 3) + (3 x 3) = +1

A4 = -(3 x 6) – (1 x 4) + (1 x 4) + (3 x 2) = -12

A5 = -(3 x 3) – (1 x 4) + (1 x 1) + (3 x 5) = +3

∑
=

−−−=
m

1i
ijj 1))p(2i(mA

Sequences 2,5,3,1,4 
and 5,2,3,1,4 are 
optimal and the 
makespan is 32.
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Flow Shops with Limited Intermediate 
Storage (1)

Assumption: No intermediate storage, otherwise one storage place is 
modeled as machine on which all jobs have 0 processing time
Fm | block | Cmax

Dij : time when job j leaves machine i, Dij ≥ Cij

For sequence j1, …, jn the following equations hold

Critical path in a directed graph
Weight of node (i, jk) specifies the departure time of job jk from machine i
Edges have weights 0 or a processing time

∑
=

=
i

1l
jl,ji, 11

pD

)D,pmax(DD
1kkkk j1,iji,j1,iji, −+− +=

kkk jm,j1,mjm, pDD += −
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Flow Shops with Limited Intermediate 
Storage (2)

The reversibility result holds as well:
If pij

(1) = p(2)
m+1-I,j then sequence j1, …, jn in the first flow shop has the 

same makespan as sequence jn, …., j1 in the second flow shop
F2 | block | Cmax is equivalent to a Traveling Salesman problem with 
n+1 cities
When a job starts its processing on machine 1 then the proceeding 
job starts its processing on machine 2

time for job jk on machine 1

Exception: The first job j* in the sequence spends time p1,j* on machine 1
Distance from city j to city k

d0k = p1k

dj0 = p2j

djk = max (p2j, p1k)

)p,pmax(
1kk j,2j,1 −
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Directed Graph for the Computation of 
the Makespan

0,j1 0,j2 0,jn

1,j1

m,j1 m,jn

i,j1k

i+1,jk

i-1,jk+1

1,j2

0

0

0
0 2j,1

p
nj,1

p

1kj,ip
+

nj,mp

kj,1ip +

1j,1
p

1j,2p
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Graph Representation of a Flow Shop 
with Blocking

52363
14344
44244
36355
j5j4j3j2j1jobs

kj,1p

kj,2p

kj,3p

kj,4p
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0

0

0

0

0

0

0
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Example: A Two Machine Flow Shop 
with Blocking and the TSP (1)

Consider 4 job instance with processing times

2648P2,j

9332P1,j

4321jobs

Translates into a TSP with 5 cities

6
3
3

2480a,j

9320b,j

4210cities

There are two optimal schedules
1, 4, 2, 3 ⇒ 0 → 1 → 4 → 2 → 3 → 0 and
1, 4, 3, 2
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Example: A Two Machine Flow Shop 
with Blocking and the TSP (2)

Comparison SPT(1) – LPT(2) schedules for unlimited buffers:
1, 3, 4, 2; 1, 2, 3, 4 and 1, 3, 2, 4

F3 | block | Cmax is strongly NP – hard and cannot be described as a 
traveling salesman problem
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Special Cases of Fm | block | Cmax

Special cases of Fm | block | Cmax
Proportionate case: Fm | block, pij = pj | Cmax

A schedule is optimal for Fm | block, pij = pj | Cmax if and only if it is an 
SPT- LPT schedule

Proof :

optimal makespan with unlimited buffers 

Proof – concept:
Any SPT-LPT schedule matches the lower bound
Any other schedule is strictly greater than the lower bound

∑
=

−+≥
n

1j
n1jmax )p,...,1)max(p(mpC
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SPT- LPT Schedule

SPT – part: A job is never blocked

LPT – part: No machine must ever wait for a job
The makespan of an SPT – LPT schedule is identical to an SPT – LPT 
schedule for unlimited buffers.

Second part of the proof by contradiction
The job jk with longest processing time contributes m times its 
processing time to the makespan 

If the schedule is no SPT- LPT schedule
a job jh is positioned between two jobs with a longer processing time
this job is either blocked in the SPT part or the following jobs cannot be 
processed on machine m without idle time in between 
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Profile Fitting (PF)

Heuristic for Fm | block | Cmax
Local optimization
Selection of a first job (e.g. smallest sum of processing time)
Pick the first job as next that wastes the minimal time on all m

machines.
Using weights to weight the idle times on the machines depending

the degree of congestion
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Application of the PF Heuristic 

First job: job 3  (shortest total processing 
time)
Second job : job  1  2  4  5

idle time  11     11         15 3
job 5

Sequence: 3  5  1  2  4 makespan 32

makespan for unlimited storage
optimal makespan

First job: job 2 (largest total processing time)
Sequence: 2  1  3  5  4 makespan 35

52363

14344

44244

36355

j5j4j3j2j1jobs

kj,1p

kj,2p

kj,3p

kj,4p

F2  | block | Cmax = F2  | nwt | Cmax
but Fm | block | Cmax ≠ Fm | nwt | Cmax
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Flexible Flow Shop with Unlimited 
Intermediate Storage (1)

Proportionate case
FFc | pij = pj | Cmax

non preemptive preemptive
LPT heuristic LRPT heuristic

NP hard optimal for  a single stage
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Example: Minimizing Makespan with 
LPT

p1 = p2 = 100 p3 = p4 = … = p102 = 1
2 stages: 2 machines at first stage

1 machine at second stage

1 2
1st stage

3 – 102 2 201 Optimal schedule

3 – 102 1 102 2 2nd stage
0 100 200 301

1 3 – 102 

LPT heuristic
2 2

2 1 2 3 – 102 
0 100 200 300 400
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Flexible Flow Shop with Unlimited 
Intermediate Storage (2)

FFc | pij = pj | ∑ Cj

SPT is optimal for a single stage and for any numbers of stage with a 
single machine at each stage
SPT rule is optimal for FFc | pij = pj | ∑ Cj if each stage has at least as 
many machines as the preceding stage
Proof:
Single stage SPT minimizes ∑ Cj and the sum of the starting times 
∑ (Cj – pj)
c stages: Cj occurs not earlier than cpj time units after its starting time 
at the first stage
Same number of machines at each stage:
SPT: each need not wait for processing at the next stage

= sum of the starting times ∑ jC + ∑
=

n

j
jcp

1=

n

1j
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Job Shops

The route of every job is fixed but not all jobs follow the same
route
J2 || Cmax

J1,2 : set of all jobs that have to be processed first on machine 1
J2,1 : set of all jobs that have to be processed first on machine 2
Observation: If a job from J1,2 has completed its processing on 
machine 1 the postponing of its processing on machine 2 does not
matter as long as machine 2 is not idle.
A similar observation hold for J2,1

a job from J1,2 has a higher priority on machine 1 than any job 
form J2,1 and vice versa

Determining the sequence of jobs from J1,2

F2 || Cmax : SPT(1) – LPT(2) sequence 
machine 1 will always be busy

J2 || Cmax can be reduced to two F2 || Cmax problems
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Representation as a Disjunctive Graph G

Jm || Cmax is strongly NP hard
Representation as a disjunctive graph G
Set of nodes N : 

Each node corresponds to an operation (i, j) of job j on machine i
Set of conjunctive edges A:

An edge from (i, j) to (k, j) denotes that job j must be processed 
on machine k immediately after it is processed on machine i
Set of disjunctive edges B:

There is a disjunctive edge from any operation (i, j) to any 
operation (i, h), that is, between any two operations that are executed 
on the same machine

All disjunctive edges of a machine form a cliques of double arcs
Each edge has the processing time of its origin node as weight
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Directed Graph for Job Shop

There is a dummy source node U connected to the first operation of 
each job. The edges leaving U have the weight 0.
There is a dummy sink node V, that is the target of the last operation 
of each job.

Source

U

1,1

2,2 1,2 3,2 V

1,3

3,1

4,3

2,1

4,2

2,3

0

0

0

p23

p43
p42

p43

Sink
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Feasible Schedule

Feasible schedule: Selection of one disjunctive edge from each pair 
of disjunctive edges between two nodes such that the resulting graph 
is acyclic
Example

D: set of selective disjunctive edges
G(D): Graph including D and all conjunctive edges
Makespan of a feasible schedule: Longest path from U to V in G(D)

1. Selection of the disjunctive edges D
2. Determination of the critical path

h,j

h,k

i,j

i,k
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Disjunctive Programming Formulation

yij: starting time of operation (i,j)
Minimize Cmax subject to
ykj ≥ yij + pij if (i,j) → (k,j) is a conjunctive edge
Cmax ≥ yij + pij for all operations (i,j)

yij ≥ yil + pil or      
yil ≥ yij + pij for all (i,l) and (i,j) with i = 1, …, m

yij ≥ 0 for all operations (i,j)
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Example: Disjunctive Programming 
Formulation

4 machines , 3 jobs

p22 = 8, p12 = 3, p42 = 5, p32 = 62, 1, 4, 32
p13 = 4, p23 = 7, p43 = 31, 2, 43

p11 = 10, p21 = 8, p31 = 41, 2, 31
processing timesmachine sequencejobs

y21 ≥ y11 + p11 = y11 + 10

Cmax ≥ y11 + p11 = y11 + 10

y11 ≥ y12 + p12 = y12 + 3 or y12 ≥ y11 + p11 = y11 + 10
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Branch and Bound Method to 
Determine all Active Schedules

:set of all schedulable operations (predecessors of these 
operations are already scheduled),

:earliest possible starting time of operation

t(   ) smallest starting time of a operation

Ω

ji,r

Ω(i,j)∈

ΩΩ ⊆′

Ω
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Generation of all Active Schedules

Step 1: (Initial Conditions) Let       contain the first operation of each 
job; Let            , for all 

Step 2: (machine selection) compute for the current partial  
schedule

and let i* denote the machine on which the minimum is achieved.

Step 3: (Branching) Let      denote the set of all operations (i*,j) on 
machine i* such that

For each operation in      , consider an (extended) partial schedule 
with that operation as the next one on machine i*.
For each such (extended) partial schedule, delete the operation 
from     , include its immediate follower in    , and return to Step 2.   

Ω
Ωj)(i, ∈0rij =

'Ω

}pr{min )t( ijij)j,i(
+=Ω

Ω∈

ΩΩ

)(tr j*i Ω<

'Ω
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Generation of all Active Schedules

Result: Tree with each active schedule being a leaf

A node v in this tree: partial schedule
Selection of disjunctive edges to describe the order of all 
operations that are predecessors of 

An outgoing edge of v: Selection of an operation                
as the next job on machine i*

The number of edges leaving node v = number of operations in 

v’: successor of v
Set D’ of the selected disjunctive edges at v’ → G(D’)

Ω

'Ωj)(i*, ∈

'Ω
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Lower Bound for Makespan at v’

simple lower bound: critical path in graph G(D’)
complex lower bound: 

critical path from the source to any unscheduled operation: 
release date of this operation
critical path form any unscheduled operation to the sink: due date 
of this operation
Sequencing of all unscheduled operations on the appropriate 
machine for each machine separately

1 | rj | Lmax for each machine (strongly NP-hard)
Reasonable performance in practice
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Application of Branch and Bound

U
8

4,32,31,3

V3,24,21,22,2

3,12,11,1

0 63 5

0

10 8

4

0 3

74
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Application of Branch and Bound
Level 1

Initial graph: only conjunctive edges
Makespan: 22

Level 1:
(1,3)}(2,2),{(1,1),Ω =

44}8,010,0min{0 )t( =+++=Ω

1i* =
(1,3)}{(1,1),Ω ' =
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Schedule Operation (1,1) first

U
8

4,32,31,3

V3,24,21,22,2

3,12,11,1

0 63 5

0

10 8

4

0 3
10

10

74
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Schedule Operation (1,1) first

2 disjunctive edges are added
(1,1) (1,2)
(1,1) (1,3)
Makespan: 24
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Schedule Operation (1,1) first

Improvements of lower bound by generating an instance 
of 1 | rj | Lmax for machine 1

Lmax =3 with sequence 1,2,3
Makespan: 24+3=27

141312dij

10100rij

4310pij

321jobs
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Schedule Operation (1,1) first

Instance of 1 | rj | Lmax for machine 2

Lmax = 4 with sequence 2,1,3
Makespan: 24+4 = 28

211020dij

14010rij

788pij

321jobs
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Schedule Operation (1,3) first

2 disjunctive edges are added → Makespan: 26
1 | rj | Lmax for machine 1
Lmax = 2 with sequence 3, 1, 2
Makespan: 26+2=28 
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Application of Branch an Bound
Level 2

Level 2: Branch from node (1,1)

There is only one choice
(2,2) (2,1); (2,2) (2,3)

Two disjunctive edges are added

)}3,1(),1,2(),2,2{(=Ω
8)410,810,80min()(t =+++=Ω

2*i =
)}2,2{(' =Ω
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Branching Tree

LB=28

(2,1)

(1,1) scheduled 
first on 
machine 1

No disjunctive arcs
Level 0

(1,3) scheduled first
on machine 1Level 1

LB=28

Level 2 (1,1) scheduled first
on machine 1
(2,2) scheduled first 
on machine 2

LB=28
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Continuation of the Procedure yields

2 34

1 23

2 1 32

1 3 2 (or 1 2 3)1

job sequencemachine

Makespan: 28
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Gantt Chart for J4 || Cmax

21 3Machine 1

2 1 3Machine 2

1 2Machine 3

32
Machine 4

30200 10
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Shifting Bottleneck Heuristic

A sequence of operations has been determined for a subset M0 of all  
m machines.

disjunctive edges are fixed for those machines
Another machine must be selected to be included in M0: Cause of 
severest disruption (bottleneck) 
All disjunctive edges for machines not in M0 are deleted → Graph G’
Makespan of G’ : Cmax (M0)

for each operation (i, j) with i ∉ M0 determine release date and due date
allowed time window 

Each machine not in M0 produces a separate 1 | rj | Lmax problem
Lmax(i): minimum Lmax of machine i

Machine k with the largest Lmax(i) value is the bottleneck
Determination of the optimal sequence for this machine → Introduction of 
disjunctive edges
Makespan increase from M0 to M0 ∪ {k} by at least Lmax(k)
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Shifting Bottleneck Heuristic

Resequencing of the operation of all machines in M0

p22 = 8, p12 = 3, p42 = 5, p32 = 62, 1, 4, 32
p13 = 4, p23 = 7, p43 = 31, 2, 43

p11 = 10, p21 = 8, p31 = 41, 2, 31
processing timesmachine sequencejobs

Iteration 1 : M0 = ∅ G’ contains only conjunctive edges
Makespan (total processing time for any job ) : 22

1 | rj | Lmax problem for machine 1:
optimal sequence 1, 2, 3 → Lmax(1)=5
1 | rj | Lmax problem for machine 2:
optimal sequence 2, 3, 1 → Lmax(2)=5
Similar Lmax(3)=4, Lmax(4)=0

Machine 1 or machine 2 are the bottleneck
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Shifting Bottleneck Heuristic

Machine 1 is selected → disjunctive edges are added : graph G’’
Cmax ({1})=Cmax(∅) + Lmax(1) = 22 + 5 = 27

S

4,32,31,3

T3,24,21,22,2

3,12,11,1

0 63 5

0

10 8

4

0 3

8

4 7
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Shifting Bottleneck Heuristic

Iteration 2
1 | rj | Lmax problem for machine 2
optimal sequence 2, 1, 3 → Lmax(2)=1
1 | rj | Lmax problem for machine 3
optimal sequences 1, 2 and 2, 1 → Lmax(3) =1
Similar Lmax (4) = 0
Machine 2 is selected : M0 = {1, 2}
Cmax ({1,2}) = Cmax ({1}) + Lmax (2) = 27 + 1 = 28
Disjunctive edges are added to include machine 2
Resequencing for machine 1 does not yield any improvement
Iteration 3
No further bottleneck is encountered
Lmax(3)=0, Lmax(4)=0

Overall makespan 28
2, 1, 3

2
2, 1

3
2, 31, 2, 3sequences

41machines
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Open Shops

O2 || Cmax

In which cases is Cmax strictly greater than the right hand side of the 
inequality?
Non delay schedules

Idle period only iff one job remains to be processed and this job is 
executed on the other machine: at most on one of the two machines

Longest Alternate Processing Time first (LAPT)
Whenever a machine is free start processing the job that has the
longest processing time on the other machine
The LAPT rule yields an optimal schedule for O2 || Cmax with 
makespan

( )∑∑≥
==

n

1j
j2

n

1j
j1max p,pmaxC









+= ∑∑

==

n

1j
j2

n

1j
j1j2j1max p,p),ppmax(maxC

}n,...,1{j∈
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Open Shops

Assumption
p1j ≤ p1k ;  p2j ≤ p1k

longest processing time belongs to operation (1, k)
LAPT: Job k is started on machine 2 at time 0

Job k has lowest priority on machine 1
It is only executed on machine 1 if no other job is available for 
processing on machine 1
a) k is the last job to be processed on machine 1
b) k is the second to last job to be processed in machine 1 and the

last job is not available due to processing on machine 2
Generalization: The 2(n-1) remaining operations can be processed in 
any order without unforced idleness.
No idle period in any machine → optimal schedule
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Open Shops

Case 1: Idle period on machine 2
job2 needs processing on machine 2 (last job on machine 2) and job l is 
still processed on machine 1
job l starts on machine 2 at the same time when job k starts on machine 
1 p1k ≥ p2l → machine 1 determines makespan and there is no idle time 
on machine 1 → optimal schedule

Case 2: Idle period on machine 1
all operations are executed on machine 1 except (1, k) and job k is still 
processed on machine 2
makespan is determined by machine 2 → optimal schedule without idle 
periods
makespan is determined by machine 1 → makespan p2k + p1k, optimal 
schedule
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General Heuristic Rule

Longest Total Remaining Processing on Other Machines first rule
but Om || Cmax is NP hard for m ≥ 3
(LAPT is also optimal for O2 | prmp | Cmax )
Lower bound

The optimal schedule matches the lower bound
The problem O2 || Lmax is strongly NP hard (Reduction of 3 Partitions)









≥ ∑ ∑

= =

m

1i

n

1j
ijijmax pmax,pmaxmaxC

}n,...,1{j∈ }m,...,1{j∈

1 4 2 3M 1 unnecessary increase 
in makespan2 1 3 4M 2

31 4 2M 1
no unnecessary 

increase in makespan2 1 3 4M 2
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Stochastic Models: Notation

Xij = the random processing time of job j on machine i

1/λij = the mean or expected value of the random variable Xij

Rj = the random release date of job j

Dj = the random due date of job j

wj = the weight (or importance factor) of job j
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Density and Distribution Function 
Example

f(t)

0 2 4 6 8 10

0 2 4 6 8 10

0.25

0.5

0.25

0.5

0.75

1.00

F(t)
t

t
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The Exponentional Distribution

f(t) F(t)

1λ

1-e-λt

t

λe-λt

t

c(t)

λ

t
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Stochastic Dominance

X1 is said to be larger in expectation than X2 if E(X1) ≥ E(X2).
X1 is said to be stochastically larger than X2 if

P(X1 > t) ≥ P(X2 > t) or 1-F1(t) ≥ 1-F2(t) for all t.
Notation: X1 ≥st X2

Likelihood ratio sense
Continuous case: X1 is larger than X2 in the likelihood ratio sense if 
f1(t)/f2(t) is nondecreasing in t, t ≥ 0.
Discrete case: X1 is larger than X2 in the likelihood ratio sense if 
P(X1=t)/P(X2=t) is nondecreasing in t, t = 0, 1, 2, …
Notation: X1 ≥lr X2

X1 is almost surely larger than or equal X2 if P(X1 ≥ X2) = 1.
Implies that f1 and f2 may overlap at most on one point
Notation: X1 ≥a.s. X2
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Stochastic Dominance

Chain of implications

Almost surely larger Larger in likelihood ratio sense

Stochastically largerLarger in expectation
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Stochastic Dominance based on 
Variance

X1 is said to be larger than X2 in the variance sense if 
var(X1) > var(X2)

X1 is said to be more variable than X2 if
continuous case

discrete case
for all convex functions h.

Notation: X1 ≥cx X2

X1 is said to be symmetrically more variable than X2 if f1(t) and f2(t) 
are symmetric around the same mean 1/λ and 

F1(t) ≥ F2(t) for 0 ≤ t ≤ 1/λ and
F1(t) ≤ F2(t) for 1/λ ≤ t ≤ 2/λ

∫∫
∞∞

≥
0

2
0

1 )t(dF)t(h)t(dF)t(h

∑∑
∞

=

∞

=

=≥=
0t

2
0t

1 )tX(P)t(h)tX(P)t(h
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Stochastic Dominance based on 
Variance

Chain of implications

Symmetrically more variable

More variable

Larger in variance
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Increasing Convex Ordering

X1 is said to larger than X2 in the increasing convex sense if

continuous case

discrete case
for all increasing convex functions h.

Notation: X1 ≥icx X2

∫∫
∞∞

≥
0

2
0

1 )t(dF)t(h)t(dF)t(h

∑∑
∞

=

∞

=

=≥=
0t

2
0t

1 )tX(P)t(h)tX(P)t(h

Stochastically larger Larger in the increasing convex sense

More variable Larger in the increasing convex sense
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Lemma: Increasing Convex Ordering

Two vectors of independent random variables
X1

(1), …, Xn
(1) and X1

(2), …, Xn
(2)

All 2n variables are independent
Let

Z1 = g(X1
(1), …, Xn

(1))
and

Z2 = g(X1
(2), …, Xn

(2))
where g is increasing convex in each one of the n arguments.

If Xj
(1) ≥icx Xj

(2) , j = 1, …, n , then Z1 ≥icx Z2
Proof by induction
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Classes of Policies

Nonpreemptive Static List Policy
The decision maker orders the jobs at time zero according to a 
priority list which does not change during the evolution of the process. 
Every time a machine is freed the next job on the list is selected for 
processing. 

Preemptive Static List Policy
The decision maker orders the jobs at time zero according to a 
priority list which includes jobs with nonzero release dates. At any 
point in time the job at the top of the list of available jobs is the one to 
be processed on the machines.
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Classes of Policies

Nonpreemptive Dynamic Policy
Every time a machine is freed, the decision maker is allowed to 
determine which job goes next. 

Decision may depend on available information like current time, number 
of waiting jobs, number of currently processed jobs…
Preemption is not allowed. Every job that is started has to be executed 
without interruption.

Preemptive Dynamic Policy
Every time a machine is freed, the decision maker is allowed to 
determine which job goes next. 

Preemption is allowed 
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