

Flow Shops & Flexible Flow Shops

University at Buffalo (SUNY)

Presentation Approach

First Steps....

University at Buffalo (SUNY)

First Steps...

- All operations on every job (every machine)
- All jobs on the same route (same order)
- Machines in series

First Steps....

- Machines in series \rightarrow issue of buffer space in between
 - Small items no problem; space unlimited
 - Large items capacity (space) constraints
- Blocking
 - When buffer space is full

University at Buffalo (SUNY)

Flexible Flow Shop

- More generic environment
- Number of stages in series
- Machines in parallel at each stage
- A given job processed on one machine at each stage

Also called Compound, Hybrid or Multiprocessor flow shop

University at Buffalo (SUNY)

Makespan Objective ~
$$C_{max}$$

- Paramount focus of research
- Practical Interest
 - Utilization = Processing time/Makespan
 - > Hence minimize C_{max} > maximize Util.
- C_{max} already hard to optimize
- Other objectives (ΣC_j , D_j related, etc.) offer harder challenges

According to intermediate buffer space capacity (between machines)

Flow shops

Unlimited capacity Limited capacity

University at Buffalo (SUNY)

Flexible FFs

Unlimited capacity Limited capacity

Flow Shops with....

....unlimited buffer space

University at Buffalo (SUNY)

Flow shops – unlimited buffer space

Fm $| C_{max}$ – no constraints and unlimited buffer space Is one permutation of jobs traversing sufficient ?

Jobs can pass one another while waiting in queues

Sequence of jobs will change from machine to machine

Changing sequences of jobs between machines may result in lower C_{max}

University at Buffalo (SUNY)

1 4 3 M_Y 4 3 1 Better; why? Department of Industrial Engineering

IE 661 Chapter 6 Flow Shops and Flexible Flow Shops

For an m-machine Flowshop, there exists an optimal schedule that does not need jobs to be re-sequenced between the <u>first 2</u> and <u>last 2</u> machines

Re-Sequencing

For 2 machines in series, there will always be an optimal schedule without job sequence changes

 $\mathbf{F}_2 \mid | \mathbf{C}_{\max}? \qquad \mathbf{F}_3 \mid | \mathbf{C}_{\max}?$

University at Buffalo (SUNY)

Department of Industrial Engineering

 $F_{>3} | | C_{max}?$

Permutation Flow Shops

- Sequencing of jobs creates scheduling problems
- If sequencing NOT allowed permutation flow shops easier to model

Permutation Flow Shops

- Completion time of job j₁ (given) at machine i will depend on earlier processing times of the said job j₁
- $\Rightarrow C_{i,j_1}$ = Processing time (of j_1) on machine 1 + processing time on machine 2 + + processing time on machine i

 $\succ C_{i,j_1} = \Sigma P_{s,j_1}$ (summation of s from 1 to i)

- > m equations for the said job at every machine
- Completion time of job j_k at machine 1 (given) will depend on the processing times of earlier jobs on the said machine 1
- $\rightarrow C_{1,j_k}$ = Processing time of j_1 on machine 1 + processing time of j_2 on machine 1 + + processing time of j_k on machine 1

 $\succ C_{1,jk} = \Sigma P_{1,j_s}$ (summation of s from 1 to k)

> n equations for each job at the given machine

University at Buffalo (SUNY)

Iterative solution

- The previous two (m+n) equations and
- Completion time of any job j_k at any machine i will depend on
 - > Completion time of job j_{k-1} at machine i (earlier job over)
 - > Completion time of job j_k at machine i~1 (present job can start)
 - Whichever is later &
 - > Processing time of job j_k on machine i
- $C_{i,j_k} = Max (C_{i-1,j_k}, C_{i,j_{k-1}}) + P_{i,j_k}$ • for m-1 machines from 2 to m and n-1 jobs from 2 to n
- We have
 - initializing equations for machine 1 (for each job)
 - > Initializing equations for job j_1 (for every machine)
 - SOLVE ITERATIVELY for completion times and makespan

- Using critical path algorithm on a directed graph
 - Each job is processed on each machine i, which means there exists a node (i, j_k) for each operation
 - The weight of each node is the processing time P_{i,j_k}
 - Find maximum weighted path ΣP_{i,jk} from node $(1,j_1)$ to node (m, J_n)

Both methods for no-changes in sequence situation Permutation flow shop

University at Buffalo (SUNY)

Two Flow Shops

- Both permutation FS with m machines
- Number of jobs n
- Processing time of job j on machine i in first $FS = p_{ij}^{1}$
- Processing time of job j on machine i in 2^{nd} FS = p_{ij}^2
- Assume $p_{ij}^{1} = p_{m+1-i,j}^{2}^{2}$

University at Buffalo (SUNY)

Reversibility Result

For a Permutation job shop

will mean no change in Makespan

Other results with multiple machines are extremely complex

Backtrack to 2 machine problems!!

University at Buffalo (SUN1)

of Industrial Engineering درمینی

B

First **SPT** P_{1i} < PLPT $P_{1i} > P_2$ Next

 $\mathbf{F}_2 \mid \mathbf{C}_{\max}$

University at Buffalo (SONY) schedule can be constructed this engineering

Johnson's algorithm

$$j \varepsilon \text{ Set } 2$$

$$k \varepsilon \text{ Set } 1$$

$$j \text{ and } k$$

$$\varepsilon \text{ Set } 1;$$

$$P_{1j} > P_{1k}$$

$$j \text{ and } k$$

$$\varepsilon \text{ Set } 2;$$

$$P_{2j} < P_{2k}$$

To prove: Under any of these conditions, pairwise interchange (j and k) will reduce makespar

Original schedule: let job
$$1 < job j < job k < job m$$

$$C_{ij}$$
New schedule: let job $1 < job k < job j < job m$

$$Der C_{ij}$$
, of Industrial En

SPT (1) - LPT (2) Optimality

- For job m, C_{1j} (machine 1) will not be different since

 C_{1m} = C₁₁ + p_{1j} + p_{1k}
- When does job m reach machine 2?
- Hence, simply show that $C_{2k} > C_{2j}$,

University at Buffalo (SUNY)

SPT (1) - LPT (2) Optimality

SPT (1) – LPT (2) Optimality

$$\frac{C_{2k} - Max (C_{21} + p_{2j} + p_{2k}, C_{11} + p_{1j} + p_{2j} + p_{2k}, C_{11} + p_{1k} + p_{2k})}{C'_{2j} = Max (C_{21} + p_{2j} + p_{2k}, C_{11} + p_{1k} + p_{2k} + p_{2j}, C_{11} + p_{1k} + p_{1j} + p_{2j})}$$

 $\mathbf{D}\mathbf{T}$

Condition 1: j
$$\epsilon$$
 Set 2 & k ϵ Set 1 $P_{1j} < P_{2j}$ j and k ϵ Set 1; $P_{1j} > P_{1k}$ $P_{1j} < P_{2j}$ j and k ϵ Set 2; $P_{2j} > P_{2k}$ $P_{1j} > P_{2j}$ j and k ϵ Set 2; $P_{2j} > P_{2k}$ $P_{1k} > P_{2k}$

These are not the only optimal schedules Others hard to characterize, data dependent

> 2 machines: SPT(1) - LPT(2) schedule not applicable

Minimizing makespan in Fm | prmu | C_{max} as an MIP

Define variables

 $x_{jk} = 1$ if j is kth job in sequence, 0 otherwise I_{ik} = idle time on machine i between processing jobs in kth and (k+1)th position W_{ik} = waiting time of kth job between machines i and i + 1

Total idle time at machine m =

Idle time before (1st) jobreaches machine m

Sum of "waits" of all jobs (n - 1) from then on machine m ial Engineering

Fm | prmu | C_{max}

How long m waits for each job

 $\overline{\text{Min} (\Sigma p_{i(1)} + \Sigma I_{mj})} = \overline{\text{Min} (\Sigma \Sigma x_{j1} p_{ij} + \Sigma I_{mj})}$

Subject to:

$$\sum_{j} x_{j} k = 1, k = 1, ..., n$$

$$\sum_{k} xjk = 1, j = 1,...,n$$

$$I_{ik} + \Sigma x_{j,k+1}, p_{ij} + W_{i,k+1} - W_{ik} - \Sigma x_{jk} p_{i+1,j} - I_{i+1,k} = 0$$

In short, (k+1)th job completes on machine i+1LESS kth job completes on machine i must NOT overlap Processing time for all jobs till m

Exactly one job to a given position Exactly one position for a given job

Idle time on machine i after job $\underline{\mathbf{k}}$ over + processing time of ($\underline{\mathbf{k+1}}$ th) job on machine i + Idle time for job $\underline{\mathbf{k}}$ +1 before i+1th machine

Idle time on machine i+1 after job $\underline{\mathbf{k}}$ over + processing time of ($\underline{\mathbf{k}}$ th) job on machine i +1 + Idle time for job $\underline{\mathbf{k}}$ before i+1th machine

NP Hard

Winiversity at Euffalo (SUNY)
$$I_{1k} = 0, k = 1, \dots, nDepart$$

$$\mathbf{F}_3 \mid \mathbf{C}_{\max}$$

Cannot use SPT~NPT algorithms

Proof: by reduction from 3-partition (using one unsolvable simple case)

University at Buffalo (SUNY)

IE 661 Chapter 6 Flow Shops and Flexible Flow Shops

Theorem 1 Fm | prmu | C_{max} special cases

Generally NP hard

- Special cases can be solved
- Proportionate permutation FS

If jobs have same processing times on each of the m machines = p_j ... Can be solved by SPT-LPT algorithm

Any sequence j_1, j_2, \ldots, j_n is SPT-LPT solvable only if

$$j_k$$
 exists such that $p_{j1} \le p_{j2} \le \dots \le p_{jk}$ and $p_{jk} \ge p_{jk+1} \ge \dots \dots \ge p_{jn}$

SPT-LPT solution is optimal, but so are many others!!!!!

 $C_{\max} = \Sigma p_j + (m-1) \max (p_1, ..., p_n)$

And is INDEPENDENT of the schedule

IE 661 Chapter 6 Flow Shops and Flexible Flow Shops

Independent of Schedule Results

• Take same processing time case (specific to job, not to machine)

• $Fm \mid p_{i} = p_{i} \mid C_{i}$

- Fm | prmu| C_{max} is optimal in above even if jobs can pass one another
- ALSO, owing to independence of schedule, makespan does not depend on sequence

SPT-LPT solvable	SPT-LPT solvable
Same algorithm for optimal schedule	
Same algorithm for optimal schedule	
Same pseudopolynomial programming algorithm	
Same elimination criteria	

Many 1 machine algorithms can be applied directly proportionate Fm situations; Bubicounitere Raffiple Strist (e,g. total weighted completion dime).strial Engineering

- Makespan becomes schedule dependent
- Speed of machine i = v₁ > processing time = p₁/v₁
- Machine with smallest v_i [i.e. Max (p_j/v_i) for all j] = bottleneck

Theorem: Prop. Prmu FS with different speeds and with first (last)

machine as bottleneck -> LPT (SPT) minimizes makespan

Reversibility theory implies only last machine case need be proved

Consider special case with $v_m < v_1 < \min(v_1, v_2, \dots, v_{m-1})$

Proof: First onward case (for special case above)Then converse (for special case above)University at Eliment of Source ral caseDepartment of Industrial Engineering

Prop. Prmu FS – Diff. Speeds

•

$$j + 1 = k$$
$$P_{1k} = p_{mk} = p_{m,j+1}$$
$$\Sigma p_{ij} > \Sigma p_{ik}$$

University at Buffalo (SUNY)

$$Total = + p_{2j} + \dots + p_{mj} + p_{m,j+1} + Total = + p_{ik} + p_{2k} + \dots + p_{mk} + p_{2k} + \dots + p_{mk} + p_{mk}$$

Is NP hard and solved through heuristics

Several available

Slope heuristic is amongst the first

Reasoning: from SPT(1)-LPT(2) algorithm theorem (2 machine case)

a) Small PT on 1st m/c & Large PT on 2nd -> beginning of schedule b) Large PT on 1st m/c & Small PT on 2nd -> end of schedule

Define a Slope Index for each job $\dot{\alpha}$ to a) and 1/ $\dot{\alpha}$ to b)

Large when i large Slope Index $A_j = -\sum_i (m - (2i - 1)) p_{ij}$

Fm | | Other objective functions

- Are much harder
- $F_2 \mid \sum C_i$ is STRONGLY NP hard (difficult proof)
- Fm | pij = pj | ΣC_j is SPT solvable in a proportionate FS

Onward to FS with limited intermediate Storage

University at Buffalo (Sun 7)

Flow shops with....

.....Limited Buffer Space

University at Buffalo (SUNY)

Blocking

• Happens when intermediate storage is zero or finite

$F_2 \mid block \mid C_{max}$

- Define D_{ij} = actual time of departure of job j from m/c i
- $D_{ij} > C_{ij}$ which is the completion time
- D_{0j} = time when job j starts on first machine

$$\begin{split} D_{i,j1} &= \Sigma \ p_{l,j1} \ \text{summation of all processing times} \\ & \text{on machines 1 to I (for job j1)} \\ D_{m,jk} &= D_{m-1,jk} + p_{m,jk} \ \text{; Last machine will have infinite space ahead} \\ D_{i,jk} &= Max \ (D_{i-1,jk} + p_{i,jk}, D_{i+1,jk-1}) \\ & \text{Time when next machine is done with previous job or} \\ & \text{Time when previous machine was done with present job} \\ & \text{PLUS} \end{split}$$

Processing time of present job

University at Buffalo (SUNY)

For jobs j_1, j_2, \dots, j_n

Prmu schedule model

- Makespan = computed by critical path
- Earlier directed graph (unlimited storage) → nodes had weights
- Now, arcs given weights

Prmu schedule example

2 m-machine Flow Shops

- Reversibility property true for zero intermediate storage if
- $P_{ij}^{(1)}$ and $P_{ij}^{(2)}$ are the <u>respective processing</u> times and

Proof: one-to-one correspondence between paths of equal weight

University at Buffalo (SUNY)

$$F_2 \mid block, p_{ij} = p_j \mid C_{max}$$

- Theorem: Only an SPT-LPT schedule is optimal (for F_2 / block, $p_{ij} = p_j / \Sigma C_{max}$ as well)
- When unlimited buffer space,

 $C_{\text{max}} = \Sigma p_{j} + (m - 1) \max (p_{1}, \dots, p_{n})$

- Hence, with limited space, at least as large
- To prove:
 - > SPT-LPT will have C_{max} equal to above
 - Any schedule other than SPT LPT will have larger makespan than above

$$F_{\rm m}$$
 | block, $p_{\rm ij} = p_{\rm j} | C_{\rm max}$

- SPT Portion jobs *never blocked;* each preceding job is smaller
- Cjk = $\Sigma p_{jl} + mp_{jk}$ (summed over 1 to m~1)
- LPT Portion shorter jobs follow longer ones blocking but machine never waits
- Presence or absence of buffer space NOT important
- Hence, result similar to unlimited buffers case (we know SPT-LPT is optimal)
- That SPT-NPT only is optimal proved by contradiction
- Consider another schedule (non-SPT-LPT) that's optimal
- Job with longest p_{jk} contributes mp_{jk} in both cases
- Since new schedule is non-SPT-LPT, jh exists such that it is surrounded by 2 jobs with longer processing times

F_m | block | C_{max}

No Wait Flow Shops

- No wait as opposed to No block
- → when a machine is done, it turns "idle"
- Jobs progress by "pull down" strategy
- $F_m \mid nwt \mid C_{max}$
- $F_2 \mid nwt \mid C_{max} = F_2 \mid block \mid C_{max}$
- M > 2, "no wait" and "block" are different
- Strongly NP Hard
- TSP (n+1 cities) formulation is different; different intercity distances with complicated calculations

Flexible Flow Shops

University at Buffalo (SUNY)

Flexible Flow Shops –UNLIMITED Buffer space

Any job on any machine within a stage

Complex; Parallel single stage case Univ itself hard

Only proportionate FFS considered

$$FFC | p_{ij} = p_j | XXX$$

- LPT heuristic non-preemptive case (worst case worse than single stage)
- LRPT heuristic in preemptive case (not optimal)
 - first stage jobs finish late
 - > 2nd stage machines inordinately idle
- SPT optimality for FFC $|p_{ij} = p_j| \Sigma C_j$
 - Exists only when FFS <u>diverges</u>

Divergence: At least as many machines as in previous stage

Divergent FFC
$$|p_{ij} = p_j| \Sigma C_j$$

- Proof of SPT Optimality
- Single stage optimality of Total Completion time clear (Thm 5.3.1) (*sum of starting times also*)

FFS with c stages \rightarrow C_i of job j will be at least cp_i from starting time of job j

M1

k

M2

- F_2 | block | C_{max} with zero buffer zone
- When Job j starts of Machine 1, Job j~1 starts on Machine 2
- Job j can be
 - > a) processed on Machine 2 immediately after Machine 1 \rightarrow p1,j_k
 - > b) blocked because Job j_{k-1} is on Machine 2 $\rightarrow p_{2,jk-1}$
- Hence processing time for Job $j_k = Max (p_{1,jk}, p_{2,jk-1})$
- First job j_1 processing time = $p_{1,j1}$
- Similar to TSP problem with n+1 cities \rightarrow
- Distance from city j to city k

> $d_{0k} = p_{1k}$; $d_{j0} = p_{2j}$; $d_{jk} = \max(p_{2j}, p_{1k})$ [distance analogous to time]

Going from city j to city k = job j precedes job k

To touch city k, TS has to travel max (d_{0k}, d_{i0})

University at Buffalo (SUNY)