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Parallel Machine Models (Deterministic)

Outline

e Introduction

e Makespan without preemptions

e Makespan with preemptions

e Total completion time without preemptions
e Total completion time with preemptions

e Due-Date related objectives
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Parallel Machine Models (Deterministic)

Introduction

e Parallel machines: generalization of single machine, special case of
flexible flow shop

® 2 step process

1. allocation of jobs to machines

2. sequence of jobs on a machine
e Assumption: p1 > ps > ...... > Dn,
e Consider three objectives: minimize

1. makespan
2. total completion time

3. maximum lateness
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Parallel Machine Models (Deterministic)

Longest Processing Time Heuristicﬂ

e Consider Pm/||cinas

e Special case: P2||¢par: NP-hard in the ordinary sense
o LPT:

1. assign at t = 0, m largest jobs to m machines

2. assign remaining job with longest processing time to next free
machine

e [heorem 5.1.1: Upper bound for
¢max(LPT) . Cmae(LPT) ~ 1

Cmaz(OPT) cmax(OPT’) - 3m
e Proof: by contradiction
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Parallel Machine Models (Deterministic)

LPT: A Worst Case Example

Jobs|1/2/3/4/5/6[(7/8|9
pj |7|7/6/6/5/5/4/4]4

OPT LPT
M1 | 1 \ 6 \ \ 1 \ 8 | 9 |
M2 | 2 5 \ \ 2 7]
M3 | 3 \ 4 \ \ 3 \ 6 \
Ma | 7 [ 8 | 9 | | 4 | 5 |
0 4 8 12 t ‘o 4 8 12 16

e 4 parallel machines

® Cnar(OPT) =12, Cnaa(LPT) = 15
cmaz (LPT) 15

® enaz(OPT) — 12
4_ 1 _ 15
®3 T3, T 12
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Parallel Machine Models (Deterministic)

LLPT: Proof]

e Contradiction: Counter example with smallest n

1. Property: Shortest job 7 is the
1.1. last job to start processing (LPT)
1.2. last job to finish processing
2. If n is not the last job to finish processing, then:
2.1. deletion of n does not change ¢4, (LPT)
2.2. but it may reduce cpq(OPT') (or remain same)

e A counter example with n — 1 jobs

e All machines busy in time interval [0, Ciuae(LPT) — py)

n—1
2 Dj
° Cmax(LPT) —p, < gilm—
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Parallel Machine Models (Deterministic)

LPT: Proof ....... Contd.

n
= Pj
° J_m < ¢maz(OPT)
n
2 Py
-1y a=l”
o4 1 ¢maz (L PT) < Po(l=p )+ —
3 3m Cmagj(OPT/) _ Cmaa’;(OPT)
n
2 Py
Sl
pn(l—%) / m < pn(l_%) +1

Cma/x(OPT) _I_ Cmax(OPT) - Cmax(OPT)

n(l=

e On each machine at most 2 jobs

e LPT is optimal for this case O
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Parallel Machine Models (Deterministic)

Precedence Constraintsl

e Arbitrary ordering of jobs: CC’;Z“;((%I;%) <2-— % for LPT

e Better algorithms (bounds) exist

o P, |prec|cina: = at least as hard as Py, ||cia: (strongly NP hard for
2<m < )

e Special case m > n = Poo|prec|cmna

— P,|p; = 1, prec|cma: — NP hard

— Pp|p; = 1, tree|cpae — easily solvable with Critical Path Method
(CPM)
* Intree
* outtree
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Parallel Machine Models (Deterministic)

CPM: An Example

jobs|1/2|3/4 56|78 |9
p; 4/9/3/3/6/88/12|6

c; = earliest completion time of job j
¢ = latest possible completion time of job j

jobs|1/ 234 5|6 7|89
. 14113]3]6/12]21 /32|24 30

i

! 17]16/3]6]12]2432]24 32
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Parallel Machine Models (Deterministic)

Tree Precedence

Level 5 Level 5
Starting Jobs
Level 4 Level 4
Level 3 Level 3
Level 2 Level 2
Level 1 root - Level 1
1 \
o H | hest Ievel l T Jobswiith no successors
g max

e N(I) = number of jobs at level [

e Hlljpor +1—1) = 3 N(ljpaz +1 — k) = Total # of nodes at highest r
k=1
levels

e Critical Path rule = Highest Level First rule for trees

e Theorem 5.1.5: CP rule optimal for Pm|p,; = 1, intree|cyq, and
Pmlp; = 1, outtree|cmas

e Arbitrary precedence constraints: C;";‘;“E(OC;T),) < % for 2 machines with

Critical Path rule
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Parallel Machine Models (Deterministic)

Worst Case Example of CP]

6 jobs, 2 machines, unit processing times

INONONCEN
IRCERONG
JNONCNONE

max —

2| (o) (o) (&)
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Parallel Machine Models (Deterministic)

Example: Application of LNS Rule]

e LNS: Largest Number of Successors First
e Optimal for in and outtree
e 0 jobs, 2 machines, unit processing times

e Sub-optimal for arbitrary precedence constraints
W—={z—=(a) [1] (&) (1) (2) (&
c =4
rs) 2] (o) () ™
& ] © ® G
ANORONOR
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Parallel Machine Models (Deterministic)

o Pmlp; =1, M;|Cran
e )M are nested: 1 of 4 conditions is valid for jobs 7 and k
1. M; = M;
2. M; C My
3. My C M;
4. M;N M, =10
e Least Flexible Job First (LFJ) rule

e Machine is free — Pick job that can be scheduled on least number of
machines

e Drawback: Pick which machine when several machines available at the
same time?

e LFJ optimal for Pm|p; = 1, M,|C,4, if M, are nested
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Parallel Machine Models (Deterministic)

Proof of Optimality of LFJ for Nested M;’s

e Proof by contradiction

— 7 is the first job that violates LFJ rule
— 7% could be placed at the position of j
— by use of LFJ rules
* M; N M, =0 and | M| < |M,| (Note M, C M)

— Exchange of 7 and jx still results in an optimal schedule

e LFJ optimal for P2|p; = 1, M;|C},ar (M,'s are always nested)

University at Buffalo - IE IE 661 Scheduling Theory 14




Parallel Machine Models (Deterministic)

Example of LFJ

L P4|p] = 17Mj|0ma:c
® 8 jobs = 8 M sets:

1. M = {1,2})
2. My = Ms = {1,3,4}
3. My = {2)

4. Ms = Mg = M; = Mg = {3,4}

LFJ Optimal

O @G 1] (& @
2| (o) 2| (0 (&)
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Parallel Machine Models (Deterministic)

Pm|prmp|Cmaz |

e Linear Programming formulation
e 1,; = total time job j spends on machine ;

miﬂimize Cmagj

subject to
Y x5 =pj, Vj=1,...,n processing time
1=1
,751 Tij < Cmaz, VJ=1,...,n [processing less than Chyqz)
1=
31 ;i < Cmagz, Vi = 1,...,m [makespan on each m/c|
J
;>0 Vi=1,...,m, Vj=1,...,n non-negativity
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Parallel Machine Models (Deterministic)

Pm|prmp|Cyaz - LP Formulation

o (.. 1S a variable

e Solution of LP: optimal values of z;; and C,,,; = generation of a
schedule

e Lower Bound

Crmaz = max{pl, . J} C';knax
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Parallel Machine Models (Deterministic)

Pm|prmp|Cmaz - LRPT'

e Longest Remaining Processing Time first (LRPT)
e LRPT yields optimal schedule for Pm|prmp|Ciae
e 2 machines, 3 jobs, p1 =8, po =7, p3 =06

1 3 2 1

e Notations:

1. p;(t) = remaining processing time of job j at time ¢

2. p(t) = (p1(t), pa(t), ..., pu(t)) = vector of remaining processing
times at time ¢
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Parallel Machine Models (Deterministic)

LRPT - Majorization of Vectors

e p(t) majorizes q(t) if jép(j)@) > jﬁz q()(?) VE=1,...,n
o p(;)(t) = j™ largest element of p(¢)
e Example:
1. p(t) = (4,8,2,4) and ¢(t) = (3,0,6,6)
2. Arrange elements of each vector in descending order
3. Verify p(t) majorizes q(t)
e Result: If p(t) majorizes ¢(t), then LRPT applied to p(t) results in a
larger or equal makespan than obtained by applying LRPT to ¢(t)
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Parallel Machine Models (Deterministic)

Pn||=C; and SPT Rule

o Recall p; > py > .. ... > Dn

® p(j) = processing time of job in position j on a single machine

° ZC] — np<1) + (’TL — 1)]9(2) + ... + 2p<n_1) +p(n)
* D) PO S Pn—1) = Py for optimal schedule
e SPT rule optimal for Ppy||=C;

e Proof:
— ™ is integer (otherwise add job with processing time 0) and mn coefficients:

n coefficients: m in number
n — 1 coeflicients: m in number
2 coefficients: m in number

1 coefficients: m in number

22
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Parallel Machine Models (Deterministic)

WSPT Rule - An Example]

e WSPT minimizes £ w;C} for single machine

e Result does not extend for parallel machines

e Pm||zw,;C; = NP hard

jobs|1/2|3
e 2 machines p; |1]1]3
e Any schedule WSPT w; [1]1]3
— Job 1 and 2 on M1 and M2 at t=0, Job 3 on M1 at t=1:
Z’LUjCj = 14
— Job 3 on M1 at t=0, Job 1 and 2 on M2 at t =0 and t=1:
Z’lUjOj = 12

e w; =wy =1—€ = WSPT not necessarily optimal

w;C;(WSPT :
o L brn < 4(1+V/2) (tight bound)
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Parallel Machine Models (Deterministic)

Precedence Constraintsl

e Pm|prec| = C};: strongly NP-hard

e Result 1: Critical Path rule optimal for Pm|p; = 1, outtree| = C;

® Result 2: LFJ optimal for Pm|p; = 1, M;| = C; when M; sets are nested
o Pm|p; =1, M,|=C,; special case of Rm||=C;

e Rm||=C; can be formulated as an Integer Program
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Parallel Machine Models (Deterministic)

Rm||=C; Formulationl

1 if job j scheduled as k" to last job on m/c i

0 otherwise
minimize > 3 3 kp;ix:1.
i=1 k= =1 DTk
subject to
m n . .
'21 kzl Tigj=1Vy=1,...,n [Each job scheduled exactly
1= =
once)
.721‘,1 Tigjg <1Vi=1,....mVk=1,...,n [Each position is
]:

not taken more than once
Tik; =10, 1} Vi=1,....m Vi=1,...,n,Vk=1,...,n

e Weighted bipartite matching problem: n jobs = mn positions

Likj —

e Relax integrality constraints on x;z;

e LP solvable in polynomial time
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Parallel Machine Models (Deterministic)

Pm|prmp) ijl

o Pm|prmp|x C; special case of Qm|prmp|z C;

e Result: There exists an optimal schedule with C; < CY, if p; < pi Vj, k
e SRPT-FM rule optimal for Qm|prmp| = C;

e Shortest Remaining Processing Time on Fastest Machine

@V > Uy > ... > Uy

e, <Cp1<... 50

e There are n machines

— more jobs than machines = add machines with speed 0

— more machines than jobs =- slowest machines are not used
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Parallel Machine Models (Deterministic)

Application with SRPT-FM - Example

M/C 11234
(OF 412121
Jobs 2. 3/4|5|6 |7
Dj 1613414045 46|61
C1=2 G =5 Cgll Cy 16 Cg=21 =26 C,=35
M1| 1 3 4 5 6 7
M2| 2 4 5 6 7
M3| 3 5 6 7
M4| 4 6 7
0 10 15 20 25 30 35
ZOj = 116
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Parallel Machine Models (Deterministic)

SRPT-FM is Optimal for Qm|prmp|=C} - Proofl

len = Dn
12Cn + v1(Cre1 — C) = pPpo
'USCn + 'U2<Cn—1 — Cn) + 'Ul(On—Q - Cn—l) = DPn-2

v,C,, + ’Un_l(Cn_1 — Cn) + ...+ ’01<C1 — Cg) = D1

Hence

'Ulcn = Dn
U2On + vlcn—l = Pn T Pn-1
v3C, + 1201 +v1Ch—2 = Pp+ Ppn-1+ Pn—2

UnCn + vn—lcn—l + ...+ vlcl — Dn +pn—1 + ... —|_p1
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Parallel Machine Models (Deterministic)

SRPT-FM is Optimal for Qm|prmp| = C; - Proof - Contd...

e S'isoptimal = C, <(C! , <...< (]

o c, > pn/v1 = viC} > py

e Processing done on jobs n and n — 1 < (vy + v9)C! + v1(C,_; — C)
o = 030, + 010,y > Py + Po

o Similarly v;,C), + vp_1C)_; + ... 01C), 11 <P+ Ppo1+ ..+ Ppii1

’Ulol = le
?)207,1 -+ le’ = v,C, + v1C,_1
1,C) + v, 1O+ ... +v0] = 0,C+v,1Ch 1+ ... +0v.0y
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Parallel Machine Models (Deterministic)

SRPT-FM is Optimal for Qm|prmp| = C; - Proof - Contd...

e Multiply inequality ¢ by c;; > 0 and obtain = C} > = C;
e Proof is complete if these «; exist

e (; must satisfy

vy + veon + ...+ v0, = 1
vy + a3+ ...+ U100, = 1
via, = 1

e These o; exist as v; > vy >

. Up,
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Parallel Machine Models (Deterministic)

Pm| ]Lmaxl

e Pm|| L4, with all due dates =0 = Pm||C},q. = NP-hard

® Assume L, ,, = 2
C; <d;j+ z = set d; = d;j + z (hard deadline)

e Finding a schedule for this problem equivalent to solving
Qm|’rj7 prmp| Cma:v

— Reverse direction of time

e
I

|
|
0
|
t |
K 0
C

max

— Release each job j at K — d; (for a sufficiently big K)
— Solve problem with LRPT-FM for L,,,. < z and perform search over

Z

IE 661 Scheduling Theory 33

University at Buffalo - IE




Parallel Machine Models (Deterministic)

Minimizing Ly g, With Preemptions

Jobs|1/2/3/4
d; |4/5/8/9
p; 131338

o P2|prmp|lnaz
o Is there a feasible schedule with L., =0 ? (d; = d;)

Jobs|1/2/34
r; 1514110
p;i 1313|138

e Is there a feasible schedule with C,,,, < 97 YES, apply LRPT
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