PARALLEL MACHINE MODELS (DETERMINISTIC)

Chapter 5, "Scheduling: Theory, Algorithms & Systems", Pinedo IE 661 Scheduling Theory Fall 2003 Department of Industrial Engineering University at Buffalo (SUNY)

September 2003

Introduction

- Parallel machines: generalization of single machine, special case of flexible flow shop
- 2 step process
 - 1. allocation of jobs to machines
 - 2. sequence of jobs on a machine
- Assumption: $p_1 \ge p_2 \ge \ldots \ge p_n$
- Consider three objectives: minimize
 - 1. makespan
 - 2. total completion time
 - 3. maximum lateness

MAKESPAN WITHOUT PREEMPTIONS

Longest Processing Time Heuristic

- Consider $Pm||c_{max}|$
- Special case: $P2||c_{max}$: NP-hard in the ordinary sense
- LPT:
 - 1. assign at t = 0, m largest jobs to m machines
 - 2. assign remaining job with longest processing time to next free machine
- Theorem 5.1.1: Upper bound for $\frac{c_{max}(LPT)}{c_{max}(OPT)}:\frac{c_{max}(LPT)}{c_{max}(OPT)} \leq \frac{4}{3} \frac{1}{3m}$
- Proof: by contradiction

Precedence Constraints

- Arbitrary ordering of jobs: $\frac{c_{max}(LIST)}{c_{max}(OPT)} \le 2 \frac{1}{m}$ for LPT
- Better algorithms (bounds) exist
- $P_m |prec|c_{max} \Rightarrow$ at least as hard as $P_m ||c_{max}$ (strongly NP hard for $2 \le m < \infty$)
- Special case $m \ge n \Rightarrow P\infty |prec|c_{max}$
 - $-P_m | p_j = 1, prec | c_{max} \rightarrow NP$ hard
 - $-P_m|p_j = 1, tree|c_{max} \rightarrow easily solvable with Critical Path Method (CPM)$
 - * intree
 - * outtree

jobs	1	2	3	4	5	6	7	8	9
p_j	4	9	3	3	6	8	8	12	6

 $c_j' = \text{earliest completion time of job } j \\ c_j'' = \text{latest possible completion time of job } j$

ſ	jobs	1	2	3	4	5	6	7	8	9
	c'_j	4	13	3	6	12	21	32	24	30
	c_j''	7	16	3	6	12	24	32	24	32

University at Buffalo - IE

- LNS: Largest Number of Successors First
- Optimal for in and outtree
- 6 jobs, 2 machines, unit processing times
- Sub-optimal for arbitrary precedence constraints

 $Pm|M_j|C_{max}$

- $Pm|p_j = 1, M_j|C_{max}$
- ullet M_j are nested: 1 of 4 conditions is valid for jobs j and k

1.
$$M_j = M_k$$

2. $M_j \subset M_k$
3. $M_k \subset M_j$
4. $M_j \cap M_k = \emptyset$

- Least Flexible Job First (LFJ) rule
- \bullet Machine is free \rightarrow Pick job that can be scheduled on least number of machines
- Drawback: Pick which machine when several machines available at the same time?
- LFJ optimal for $Pm|p_j = 1, M_j|C_{max}$ if M_j are nested

University at Buffalo - IE

MAKESPAN WITH PREEMPTIONS

- C_{max} is a variable
- Solution of LP: optimal values of x_{ij} and $C_{max} \Rightarrow$ generation of a schedule
- Lower Bound

$$C_{max} \ge max\{p_1, \sum_{i=1}^n \frac{p_j}{m}\} = C_{max}^*$$

LRPT - Majorization of Vectors

•
$$\bar{p}(t)$$
 majorizes $\bar{q}(t)$ if $\sum_{j=1}^{k} p_{(j)}(t) \ge \sum_{j=1}^{k} q_{(j)}(t) \qquad \forall k = 1, \dots, n$

- $p_{(j)}(t) = j^{th}$ largest element of $\bar{p}(t)$
- Example:
 - 1. $\bar{p}(t) = (4, 8, 2, 4)$ and $\bar{q}(t) = (3, 0, 6, 6)$
 - 2. Arrange elements of each vector in descending order
 - 3. Verify $\bar{p}(t)$ majorizes $\bar{q}(t)$
- Result: If $\bar{p}(t)$ majorizes $\bar{q}(t)$, then LRPT applied to $\bar{p}(t)$ results in a larger or equal makespan than obtained by applying LRPT to $\bar{q}(t)$

TOTAL COMPLETION TIME WITHOUT PREEMPTIONS

$$P_m || \Sigma C_j$$
 and SPT Rule

• Recall
$$p_1 \ge p_2 \ge \ldots \ge p_n$$

• $p_{(j)}$ = processing time of job in position j on a single machine

•
$$\Sigma C_j = np_{(1)} + (n-1)p_{(2)} + \dots + 2p_{(n-1)} + p_{(n)}$$

• $p_{(1)} \le p_{(2)} \dots \le p_{(n-1)} \le p_{(n)}$ for optimal schedule

• SPT rule optimal for
$$P_m || \Sigma C_j$$

• Proof:

 $-\frac{n}{m}$ is integer (otherwise add job with processing time 0) and mn coefficients:

n coefficients: m in number n-1 coefficients: m in number

 $\begin{array}{l} 2 \text{ coefficients: } m \text{ in number} \\ 1 \text{ coefficients: } m \text{ in number} \end{array}$

University at Buffalo - IE

WSPT Rule - An Example

- WSPT minimizes $\Sigma w_j C_j$ for single machine
- Result does not extend for parallel machines
- $Pm||_{\Sigma} w_j C_j \Rightarrow \mathsf{NP}$ hard
- 2 machines
- Any schedule WSPT

- Job 1 and 2 on M1 and M2 at t=0, Job 3 on M1 at t=1: $\Sigma w_j C_j = 14$
- Job 3 on M1 at t=0, Job 1 and 2 on M2 at t =0 and t=1: $\Sigma w_j C_j = 12$
- $w_1 = w_2 = 1 \epsilon \Rightarrow \mathsf{WSPT}$ not necessarily optimal
- $\frac{\sum w_j C_j(WSPT)}{\sum w_j C_j(OPT)} < \frac{1}{2}(1 + \sqrt{2})$ (tight bound)

University at Buffalo - IE

Precedence Constraints

- $Pm|prec| \Sigma C_j$: strongly NP-hard
- Result 1: Critical Path rule optimal for $Pm|p_j = 1, outtree| \Sigma C_j$
- Result 2: LFJ optimal for $Pm|p_j = 1, M_j| \Sigma C_j$ when M_j sets are nested
- $Pm|p_j = 1, M_j| \Sigma C_j$ special case of $Rm|| \Sigma C_j$
- $Rm||_{\Sigma}C_j$ can be formulated as an Integer Program

$$\begin{split} \hline Rm || & \Sigma C_j \text{ Formulation} \\ \hline x_{ikj} &= \begin{cases} 1 \text{ if job } j \text{ scheduled as } k^{ih} \text{ to last job on m/c } i \\ 0 \text{ otherwise} \\ \hline minimize & \sum_{i=1}^{m} \sum_{k=1}^{n} \sum_{j=1}^{n} kp_{ij}x_{ikj} \\ \text{subject to} \\ \sum_{i=1}^{m} \sum_{k=1}^{n} x_{ikj} = 1 \ \forall j = 1, \dots, n \ [\text{Each job scheduled exactly once]} \\ \sum_{j=1}^{n} x_{ikj} \leq 1 \ \forall i = 1, \dots, m, \ \forall k = 1, \dots, n \ [\text{Each position is not taken more than once]} \\ x_{ikj} &= \{0,1\} \ \forall i = 1, \dots, m, \ \forall j = 1, \dots, n, \ \forall k = 1, \dots, n \\ \text{ Weighted bipartite matching problem: } n \text{ jobs } \Rightarrow mn \text{ positions} \\ \text{ Relax integrality constraints on } x_{ikj} \\ \text{ LP solvable in polynomial time} \end{split}$$

University at Buffalo - IE

TOTAL COMPLETION TIME WITH PREEMPTIONS

 $Pm|prmp| \Sigma C_j$

- $Pm|prmp| \Sigma C_j$ special case of $Qm|prmp| \Sigma C_j$
- Result: There exists an optimal schedule with $C_j \leq C_k$, if $p_j \leq p_k \; \forall j, k$
- SRPT-FM rule optimal for $Qm|prmp| \Sigma C_j$
- Shortest Remaining Processing Time on Fastest Machine
- $v_1 \ge v_2 \ge \ldots \ge v_n$
- $C_n \leq C_{n-1} \leq \ldots \leq C_1$
- \bullet There are n machines
 - more jobs than machines \Rightarrow add machines with speed 0
 - more machines than jobs \Rightarrow slowest machines are not used

SRPT-FM is Optimal for $Qm|prmp| \Sigma C_j$ - Proof

$$v_1C_n = p_n$$

$$v_2C_n + v_1(C_{n-1} - C_n) = p_{n-1}$$

$$v_3C_n + v_2(C_{n-1} - C_n) + v_1(C_{n-2} - C_{n-1}) = p_{n-2}$$

$$\dots$$

$$v_nC_n + v_{n-1}(C_{n-1} - C_n) + \dots + v_1(C_1 - C_2) = p_1$$
Hence

$$v_1C_n = p_n$$

$$v_2C_n + v_1C_{n-1} = p_n + p_{n-1}$$

$$v_3C_n + v_2C_{n-1} + v_1C_{n-2} = p_n + p_{n-1} + p_{n-2}$$

$$\dots$$

$$v_nC_n + v_{n-1}C_{n-1} + \dots + v_1C_1 = p_n + p_{n-1} + \dots + p_1$$

University at Buffalo - IE

DUE-DATE RELATED OBJECTIVES

- $Pm||L_{max}$ with all due dates =0 $\equiv Pm||C_{max} \Rightarrow$ NP-hard
- $Qm|prmp|L_{max}$
- Assume $L_{max} = z$ $C_j \le d_j + z \Rightarrow \text{set } \overline{d_j} = d_j + z \text{ (hard deadline)}$
- Finding a schedule for this problem equivalent to solving $Qm|r_j, prmp|C_{max}$
 - Reverse direction of time

- Release each job j at $K \overline{d_j}$ (for a sufficiently big K)
- Solve problem with LRPT-FM for $L_{max} \leq z$ and perform search over z

Minimizing L_{max} with Preemptions

Jobs	1	2	3	4
d_j	4	5	8	9
p_{j}	3	3	3	8

- $P2|prmp|l_{max}$
- Is there a feasible schedule with $L_{max} = 0$? $(\overline{d_j} = d_j)$

Jobs	1	2	3	4
r_j	5	4	1	0
p_j	3	3	3	8

• Is there a feasible schedule with $C_{max} < 9$? YES, apply LRPT