
University at Buffalo IE661 Scheduling Theory 1

More Advanced Single Machine Models

University at Buffalo IE661 Scheduling Theory 2

Total Earliness And Tardiness
• Non-regular performance measures ∑Ej + ∑Tj

• Early jobs (Set j1) and Late jobs (Set j2) are scheduled according to LPT and SPT.
• Minimizing Total Earliness And Tardiness with a loose due date.
Assume:
1. dj=d.
2. p1 ≥ p2 ≥ p3 ≥……………. ≥ pn

Step 1: Assign job 1 to set j1.
set k=2

Step 2: Assign job k to set j1 and job k+1 to set j2 or vice versa.
Step 3: If k+2 ≤ n – 1, set k=k+2 and go to step 2.

If k+2 = n , assign job n to either j1 or j2 and STOP.
If k+2 = n + 1, all jobs have been assigned ; STOP.

• Flexible in assigning jobs to sets j1 and j2..
• Assignment is such that the total processing times of set j1 is minimized.

University at Buffalo IE661 Scheduling Theory 3

Total Earliness And Tardiness (Cont.)
Assume:
1. dj=d.
2. p1 ≥ p2 ≥ p3 ≥……………. ≥ pn

• Minimizing Total Earliness And Tardiness with a tight due date.
Step 1: Set τ1 =d and τ2 = ∑pj - d

Set k=1
Step 2: If τ1 > τ2, assign job k to the first unfilled position in the sequence and set

τ1= τ1 - pk .
If τ1 < τ2, assign job k to the last unfilled position in the sequence and set
τ2= τ2- pk .

Step 3: If k < n , set k = k+1 and go to step 2.
If k = n , STOP.

University at Buffalo IE661 Scheduling Theory 4

Example:
Jobs 1 2 3 4 5 6
pj 106 100 96 22 20 2

13654212-22
13X54244-22
13XX4266-22
13XXX26674
1XXXX216674
1XXXXX166180

Sequenceτ2τ1

University at Buffalo IE661 Scheduling Theory 5

Total Earliness And Tardiness (Cont.)
• If we consider ∑w’Ej + ∑w”Tj ,where the weights are not

necessary the same for the two performance measures but the due
dates are same, the earlier algorithms can be generalized easily for
solving this problem.

• Now if we consider ∑wj’Ej + ∑wj”Tj and dj=d, then the weighted
LPT and weighted SPT rules have to be used for sequencing.

• Now if we consider ∑wj’Ej + ∑wj”Tj and dj≠d, the problem is NP
hard.

• Due to different due dates it might not be optimal to process the
jobs without interruption. Idle times in between consecutive jobs
might be necessary.

• Given a predetermined ordering of the jobs, the timings of the
processing of the jobs and the idle times can be computed in
polynomial times.

University at Buffalo IE661 Scheduling Theory 6

• Lemma 1: If dj+1 – dj ≤ pj+1, then there is no idle time between
jobs j and j+1 .

Three cases:
1. J is early.
2. J is completed exactly at its due date.
3. J is late.
• Lemma 2: In each cluster in a schedule, the early jobs proceed

the tardy job. Moreover, if the jobs j and j+1 are in the same
cluster and are both early, then Ej ≥Ej+1. If the jobs are both
late ,then Tj ≤ Tj+1 .

For a cluster;
dj+1 – dj ≤ pj+1.

Subtracting t+pj from both sides, we get
dj+1 - dj - t - pj ≤ pj+1 - t - pj .

Solving we get,
dj - Cj ≥ dj+1 - Cj+1

University at Buffalo IE661 Scheduling Theory 7

• The job sequence 1,2,3…….n can be decomposed into
m clusters with each cluster representing a
subsequence.

• We compute the optimal shift for each cluster.
• For a cluster with jobs k,k+1,…..,l; let
∆(j) = ∑w’l + ∑w”l l = k to j
• A block is a sequence of clusters that are processed

without interruption.
• Let E(r) = Ejr = djr – Cjr where jr is the last job in cluster
σr that is early.

• Hence E(r) = minj (djr – Cjr) ; where k ≤ j ≤ jr .
• Now let ∆(r) = ∆jr = max ∆(j) ; where k ≤ j ≤ jr .
• If none of the jobs in the cluster is early, then E(r) =∞

and ∆(r) = - ∑w”l .
• If E(r) ≥ 1 for the last early job in every cluster of the block, a

shift of the entire block by one unit time to the right decreases
the total cost by ∑∆(r) (the summation is over the block).

University at Buffalo IE661 Scheduling Theory 8

• Algorithm:
Step1: Identify the clusters and compute ∆(r) and E(r) for

each cluster.
Step2 : Find the smallest s s.t. ∑ ∆(r) ≤ 0.

Set the original Ck for each job of the first s cluster.
If s = m, then STOP; other wise go to step 3.
If no such s exists, then go to step 4.

Step3: Remove the first s clusters from the list.
Go to step 2 to consider the reduced sets of cluster.

Step 4: Find minimum (E(1)……E(m)).
Increase all Ck by minimum (E(1)……E(m)).
Eliminate all early jobs that are no longer early.
Update E(r) and ∆(r). Go to step 2.

Optimizing timings given a predetermined sequence

University at Buffalo IE661 Scheduling Theory 9

Optimizing Timings Given A
Predetermined Sequence

15181212382512wj2

1116109182010wj1

3025161826412dj

8263723pj

7654321Jobs

University at Buffalo IE661 Scheduling Theory 10

• σ1 = 1,2 ; σ2 = 3,4,5 ; σ3 = 6,7
• Completion times will be 3,5,12,15……..

E(r) = Min(dj – cj) and ∆(r) = max ∆j

115-15∆(r)

239E(r)

321Cluster

-3315∆(r)

Infinity1E(r)

32Cluster

The optimal completion times are:

3,5,14,17,23,25,33

University at Buffalo IE661 Scheduling Theory 11

Primary and Secondary Objectives
• α ׀ β ׀ γ1(Opt.), γ2.
• Lemma: For the single machine problem with n jobs subject to the

constraint that all due dates have to be met, there exists a schedule that
minimizes ∑ Cj in which job k is scheduled last, if and only if
1. dk ≥ ∑ pj
2. pk ≥ pL, for all L such that dL ≥ ∑ pj

• Minimizing total completion times with deadlines (backward algorithm).
• Algorithm:
Step 1: Set k = n, τ = ∑ pj , jc = {1,2,…...,n}
Step 2: Find k* in jc s.t. dk* ≥ τ and pk* ≥ pL , for all jobs L in jc s.t. dL ≥ τ

Put job k* in position k of the sequence.
Step 3: Decrease k by 1 ; decrease τ by pk* . Delete job k* from jc.

Step 4: If k ≥ 1 go to Step 2, otherwise STOP.

University at Buffalo IE661 Scheduling Theory 12

• Pareto-optimal schedule: is the one in which it is not
possible to decrease the value of one objective without
increasing the value of the other.
1| β | θ1γ1 + θ2γ2 ; where θ1 ,θ 2 are the weights of
the two objectives.

Lmax
Lmax (SPT/EDD)Lmax EDD

∑Cj

Trade-off between total completion time and maximum lateness

University at Buffalo IE661 Scheduling Theory 13

SEQUENCE-DEPENDENT SETUP
PROBLEMS

University at Buffalo IE661 Scheduling Theory 14

Sequence-Dependent Setup Problems

1. An algorithm which gives an optimal schedule
with the minimum makespan with sequence-dependent setup times
1 | Sjk | Cmax

University at Buffalo IE661 Scheduling Theory 15

Single machine: rj=0, no sequence dependent setup times ⇒ ∑=
j

jpCmax

1 | Sjk | Cmax NP hard

• Set-up times have a special structure and hence an efficient
solution procedure is possible.

• Consider a structure where two parameters associated with
job j : aj and bj

1. At the completion of the job the machine state is bj
2. To start the job the machine must be in state aj

• sjk = | ak - bj | is the total setup time necessary to bring the
machine from state bj to ak state.
• Machine speed.
• Travelling Salesman Problem

with n+1 cities j0, j1, …, jn. The additional city Co has
parameters ao & bo.

University at Buffalo IE661 Scheduling Theory 16

0 2

3 1

0 2

3 1

{0, 1, 2, 3} → {2, 3, 1, 0}
φ(0) = 2
φ(1) = 3
φ(2) = 1
φ(3) = 0

{0, 1, 2, 3} → {2, 1, 3, 0}

b1

bk

bj

b2

aφ(1)

aφ(2)

aφ(k)

aφ(j)

cost of going from 1 to φ(1) is | aφ(1) - b1 |

k = φ(j) is the relation that maps each element of {0, 1, 2,….,n} onto a unique element of
{0, 1, 2,…..,n} .Traveling salesman is leaving city j for city k.

{0, 1, 2, 3} → {2, 3, 1, 0}
φ(0) = 2
φ(1) = 3
φ(2) = 1
φ(3) = 0

University at Buffalo IE661 Scheduling Theory 17

Swap I(j,k) applied to a permutation φ produces another permutation φ’
by affecting only the assignments of j and k and leaving the others
unchanged.

φ’(k) = φ(j)
φ’(j) = φ(k)
φ’(l) = φ(l), l ≠ j , k

1

7

8

910

11
6

4

5

23

1

7

8

910

11
6

4
23

5

University at Buffalo IE661 Scheduling Theory 18

bj

bk

aφ(j)

aφ(k)

change in cost due to
swap I(j, k)

Lemma. If the swap causes two arrows that did nor cross earlier
to cross, then the cost of the tour Cφ I(j,k) increases and vice versa.

Cφ I(j,k) = ║[bj,bk] ∩ [a φ(j) ,bφ(k)] ║.

Here, ║[a,b] ║ = 2 (b-a) if b ≥ a
2 (a-b) if b < a

{ .¦] b, [an]bk bj, [¦{ φφ

University at Buffalo IE661 Scheduling Theory 19

• Lemma. An optimal permutation mapping φ * is
obtained if :

bj ≤ bk implies that a φ (j) ≤ a φ (k).
• This is an optimal permutation mapping and not

necessary a feasible tour.
• φ * might consist p distinct sub tours.
• A swap on i & j, belonging to different sub-tours,

will cause them to cross each other and thus
coalesce into one and increase the cost.

• Hence we select the cheapest arc that connects
two of the p sub-tours and so on.

University at Buffalo IE661 Scheduling Theory 20

• Lemma. The collection of arcs that connect the
undirected graph with the least cost contain only arcs
that connect city j to city j+1.

Consider k > j+1 .
Cφ I(j,k) = ║[bj,bk] ∩ [a φ(j) ,bφ(k)] ║

≥ ∑i ║[bi,bi+1] ∩ [a φ*(i) ,bφ*(i+1)] ║
for i= j,……., k-1

Hence the cost of swapping two nonadjacent arrows is
at least equal to the cost of swapping all arrows between
them.

• Here no arrows are allowed to cross. But in order to
connect two sub-tours this condition might not be valid.

University at Buffalo IE661 Scheduling Theory 21

a1= 2

a2= 3

a3 = 8

b1= 1

b2= 4

b3 =6

a1= 2

a2= 3

b1= 1

b2= 4

b3 =6

a3 = 8

a1= 2

a2= 3

b1= 1

b2= 4

b3 =6

a3 = 8

Cφ I(1,2) = ║[1,4] ∩ [2,3] ║ = 2(3-2) = 2
Cφ I(2,3) = ║[4,6] ∩ [3,8] ║ = 2(6-4) = 4

I(1,2) then I(2,3)
Cφ I(1,2) =║[1,4] ∩ [2,3] ║= 2(3-2) = 2
Cφ I(2,3) =║[4,6] ∩ [2,8] ║= 2(6-4) = 4

I(2,3) then I(1,2)
Cφ I(2,3) =║[4,6] ∩ [3,8] ║= 2(6-4) = 4
Cφ I(1,2) =║[1,4] ∩ [2,8] ║= 2(4-2) = 4

Here cost increased.

University at Buffalo IE661 Scheduling Theory 22

A node is of Type 1 if bj ≤ aφ(j) (arrow points up)
A node is of Type 2 if bj > aφ(j) (arrow points down)

A swap is of Type 1 if lower node is of Type 1
A swap is of Type 2 if lower node is of Type 2

If swaps I(j, j+1) of Type 1 are performed in decreasing order
of the node indices,
followed by swaps of Type 2 in increasing order
of the node indices

then a single tour is obtained without changing any
Cφ* I(j, j+1) involved in the swaps

University at Buffalo IE661 Scheduling Theory 23

Algorithm + Example

bj 1 15 26 40 3 19 31
aj 7 16 22 18 4 45 34

Step 1.
Arrange the bj in order of size and renumber the jobs so that

b1 ≤ b2 ≤ ... ≤ bn

Arrange the aj in order of size.

The permutation mapping φ* is defined by
φ* (j) = k, k being such that ak is the jth smallest of the a.

7 jobs

University at Buffalo IE661 Scheduling Theory 24

jobs 1 2 3 4 5 6 7
bj 1 3 15 19 26 31 40
aj 7 4 16 45 22 34 18
aφ*(j) 4 7 16 18 22 34 45
φ*(j) 2 1 3 7 5 6 4

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

University at Buffalo IE661 Scheduling Theory 25

Step 2.
Form an undirected graph with n nodes and undirected arcs
connecting the jth and φ*(j) nodes, j=1,…n .

If the current graph has only one component then STOP ;
otherwise go to Step 3.

3

2

7

1

6

4

5

University at Buffalo IE661 Scheduling Theory 26

Step 3.
Compute the swap costs Cφ *I(j, j+1) for j=1,…,n

Cφ* I(j, j+1) = 2 max (min (bj+1, aφ*(j+1)) - max (bj, aφ*(j))), 0)

Cφ* I(1, 2) = 2 max ((3-4), 0) = 0
Cφ* I(2, 3) = 2 max ((15-7), 0) = 16
Cφ* I(3, 4) = 2 max ((18-16), 0) = 4
Cφ* I(4, 5) = 2 max ((22-19), 0) = 6
Cφ* I(5, 6) = 2 max ((31-26), 0) = 10
Cφ* I(6, 7) = 2 max ((40-34), 0) = 12

University at Buffalo IE661 Scheduling Theory 27

Step 4.
Select the smallest value Cφ* I(j, j+1) such that j is in one component
and j+1 in another. In case of a tie for smallest, choose any.

Insert the undirected arc Rj, j+1 into the graph. Repeat this step until
all the components in the undirected graph are connected.

3

2

7

1

6

4

5

4
3

2

7

1

6

4

5

4

6

3

2

7

1

6

4

5

4

6

10

3

2

7

1

6

4

5

16

4

6

10

University at Buffalo IE661 Scheduling Theory 28

Step 5.
Divide the arcs added in Step 4 into two groups.
Those Rj, j+1 for which bj ≤ aφ(j) go in group 1,
those for which bj > aφ(j) go in group 2.

arcs bj aφ*(j) group
R2, 3 b2=3 a1=7 1
R3, 4 b3=15 a3=16 1
R4, 5 b4=19 a7=18 2
R5, 6 b5=26 a5=22 2

Step 6.
Find the largest index j1 such that Rj1

, j1+1 is in group 1.
Find the second largest index, and so on, up to jl assuming there are
l elements in the group.

Find the smallest index k1 such that Rk1
, k1+1 is in group 2.

Find the second smallest index, and so on, up to km assuming there are
m elements in the group.

j1 = 3, j2 = 2, k1 = 4, k2 = 5

University at Buffalo IE661 Scheduling Theory 29

Step 7.
The optimal tour φ** is constructed by applying the following
sequence of swaps on the permutation φ*:

φ** = φ* I(j1, j1+1) I(j2, j2+1) … I(jl, jl+1)
I(k1, k1+1) I(k2, k2+1) … I(km, km+1)

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)

Type 1 Type 2

University at Buffalo IE661 Scheduling Theory 30

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ* I(3,4) φ* I(3,4) I(2,3)

University at Buffalo IE661 Scheduling Theory 31

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ* I(3,4) I(2,3) I(4,5)

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)

University at Buffalo IE661 Scheduling Theory 32

The optimal tour is: 1 → 2 → 7 → 4 → 5 → 6 → 3 → 1

The cost of the tour is: 3 + 15 + 5 + 3 + 8 + 15 + 8 = 57

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

