More Advanced Single Machine Models

University at Buffalo

Total Earliness And Tardiness

- Non-regular performance measures $\sum E_j + \sum T_j$
- Early jobs (Set j_1) and Late jobs (Set j_2) are scheduled according to LPT and SPT.
- Minimizing Total Earliness And Tardiness with a loose due date. Assume:
- 1. $d_i = d$.
- 2. $p_1 \ge p_2 \ge p_3 \ge \dots \ge p_n$
- $\begin{array}{l} \mbox{Step 1: Assign job 1 to set } j_1. \\ & \mbox{set } k{=}2 \\ \mbox{Step 2: Assign job } k \mbox{ to set } j_1 \mbox{ and job } k{+}1 \mbox{ to set } j_2 \mbox{ or vice versa.} \\ \mbox{Step 3: If } k{+}2 \leq n-1, \mbox{ set } k{=}k{+}2 \mbox{ and go to step 2.} \\ & \mbox{ If } k{+}2 = n \mbox{ , assign job } n \mbox{ to either } j_1 \mbox{ or } j_2 \mbox{ and STOP.} \\ & \mbox{ If } k{+}2 = n+1, \mbox{ all jobs have been assigned ; STOP.} \end{array}$
- Flexible in assigning jobs to sets j_1 and j_2 .
- Assignment is such that the total processing times of set j_1 is minimized.

Total Earliness And Tardiness (Cont.)

Assume:

1. $d_j = d$. 2. $p_1 \ge p_2 \ge p_3 \ge \dots \ge p_n$

 Minimizing Total Earliness And Tardiness with a tight due date.
 Step 1: Set τ₁ =d and τ₂ = ∑p_j - d Set k=1
 Step 2: If τ₁ > τ₂, assign job k to the first unfilled position in the sequence and set

 $\tau_{1=} \tau_{1} - p_{k}$. If $\tau_{1} < \tau_{2}$, assign job k to the last unfilled position in the sequence and set

 $\tau_{2=} \tau_2 p_k$. Step 3: If k < n , set k = k+1 and go to step 2.

If k = n, STOP.

Example:

Jobs 1 2 3 4 5 6 p_j 106 100 96 22 20 2

τ_1	τ_2	Sequence
180	166	1XXXXX
74	166	1XXXX2
74	66	13XXX2
-22	66	13XX42
-22	44	13X542
-22	12	136542

Total Earliness And Tardiness (Cont.)

- If we consider ∑w'Ej + ∑w''Tj ,where the weights are not necessary the same for the two performance measures but the due dates are same, the earlier algorithms can be generalized easily for solving this problem.
- Now if we consider $\sum w_j$ 'Ej + $\sum w_j$ "Tj and d_j =d, then the weighted LPT and weighted SPT rules have to be used for sequencing.
- Now if we consider $\sum w_j E_j + \sum w_j$ Tj and $d_j \neq d$, the problem is NP hard.
- Due to different due dates it might not be optimal to process the jobs without interruption. Idle times in between consecutive jobs might be necessary.
- Given a predetermined ordering of the jobs, the timings of the processing of the jobs and the idle times can be computed in polynomial times.

• Lemma 1: If $d_{j+1} - d_j \le p_{j+1}$, then there is no idle time between jobs _j and _{j+1}.

Three cases:

- 1. J is early.
- 2. J is completed exactly at its due date.
- 3. J is late.
- Lemma 2: In each cluster in a schedule, the early jobs proceed the tardy job. Moreover, if the jobs j and j+1 are in the same cluster and are both early, then $E_j \ge E_{j+1}$. If the jobs are both late ,then $T_j \le T_{j+1}$.

For a cluster;

$$\begin{split} & d_{j+1} - d_j \leq p_{j+1.} \\ & \text{Subtracting } t+p_j \text{ from both sides, we get} \\ & d_{j+1} - d_j - t - p_j \leq p_{j+1} - t - p_{j.} \\ & \text{Solving we get,} \\ & d_i - C_i \geq d_{i+1} - C_{i+1} \end{split}$$

- The job sequence 1,2,3.....n can be decomposed into m clusters with each cluster representing a subsequence.
- We compute the optimal shift for each cluster.
- For a cluster with jobs k,k+1,....,l; let

 $\Delta(j) = \sum w'_{l} + \sum w''_{l} \qquad l = k \text{ to } j$

- A block is a sequence of clusters that are processed without interruption.
- Let $E(r) = E_{jr} = d_{jr} C_{jr}$ where j_r is the last job in cluster σ_r that is early.
- Hence $E(r) = \min_{j} (d_{jr} C_{jr})$; where $k \le j \le j_{r}$.
- Now let $\Delta(r) = \Delta j_r = \max \Delta(j)$; where $k \le j \le j_r$.
- If none of the jobs in the cluster is early, then $E(r) = \infty$ and $\Delta(r) = -\sum w''_{1}$.
- If $E(r) \ge 1$ for the last early job in every cluster of the block, a shift of the entire block by one unit time to the right decreases the total cost by $\sum \Delta(r)$ (the summation is over the block).

Optimizing timings given a predetermined sequence

• Algorithm:

Step1: Identify the clusters and compute $\Delta(r)$ and E(r) for each cluster.

Step2 : Find the smallest s s.t. $\sum \Delta(r) \le 0$. Set the original C_k for each job of the first s cluster. If s = m, then STOP; other wise go to step 3.

If no such s exists, then go to step 4.

Step3: Remove the first s clusters from the list.

Go to step 2 to consider the reduced sets of cluster.

Step 4: Find minimum (E(1)....E(m)).

Increase all C_k by minimum (E(1).....E(m)). Eliminate all early jobs that are no longer early. Update E(r) and Δ (r). Go to step 2.

University at Buffalo

Optimizing Timings Given A Predetermined Sequence

Jobs	1	2	3	4	5	6	7
pj	3	2	7	3	6	2	8
dj	12	4	26	18	16	25	30
w _{j1}	10	20	18	9	10	16	11
W _{j2}	12	25	38	12	12	18	15

•
$$\sigma_1 = 1,2$$
; $\sigma_2 = 3,4,5$; $\sigma_3 = 6,7$

• Completion times will be 3,5,12,15..... $E(r) = Min(d_j - c_{j})$ and $\Delta(r) = max \Delta_j$

Cluster	1	2	3
E(r)	9	3	2
$\Delta(\mathbf{r})$	-15	15	1

Cluster	2	3
E(r)	1	Infinity
$\Delta(\mathbf{r})$	15	-33

The optimal completion times are:

3,5,14,17,23,25,33

University at Buffalo

Primary and Secondary Objectives

- $\alpha \mid \beta \mid \gamma_1(\text{Opt.}), \gamma_2$.
- Lemma: For the single machine problem with n jobs subject to the constraint that all due dates have to be met, there exists a schedule that minimizes $\sum C_j$ in which job k is scheduled last, if and only if 1. $d_k \ge \sum p_j$ 2. $p_k \ge p_L$, for all L such that $d_L \ge \sum p_j$
- Minimizing total completion times with deadlines (backward algorithm).
- Algorithm:

Step 1: Set $k = n, \tau = \sum p_i, j^c = \{1, 2, ..., n\}$

Step 2: Find k* in j^c s.t. $d_{k*} \ge \tau$ and $p_{k*} \ge p_L$, for all jobs L in j^c s.t. $d_L \ge \tau$

Put job k* in position k of the sequence.

Step 3: Decrease k by 1 ; decrease τ by p_{k^*} . Delete job k* from j^{c.} Step 4: If $k \ge 1$ go to Step 2, otherwise STOP. • **Pareto-optimal schedule**: is the one in which it is not possible to decrease the value of one objective without increasing the value of the other.

 $1 | \beta | \theta_1 \gamma_1 + \theta_2 \gamma_2$; where $\theta_1 \theta_2$ are the weights of the two objectives.

Trade-off between total completion time and maximum lateness

University at Buffalo

SEQUENCE-DEPENDENT SETUP PROBLEMS

University at Buffalo

Sequence-Dependent Setup Problems

1. An algorithm which gives an optimal schedule with the minimum makespan with sequence-dependent setup times $1 | S_{jk} | C_{max}$ Single machine: $r_j = 0$, no sequence dependent setup times $\Rightarrow C_{\text{max}} = \sum p_j$

 $1 \mid S_{jk} \mid C_{max} \qquad \qquad \mathbf{NP hard}$

- Set-up times have a special structure and hence an efficient solution procedure is possible.
- Consider a structure where two parameters associated with job j : a_j and b_j
- 1. At the completion of the job the machine state is b_i
- 2. To start the job the machine must be in state a_i
- $s_{jk} = |a_k b_j|$ is the total setup time necessary to bring the machine from state b_j to a_k state.
- Machine speed.
- Travelling Salesman Problem
 with *n*+1 cities *j*₀, *j*₁, ..., *j_n*. The additional city C₀ has parameters a₀ & b₀.

 $k = \phi(j)$ is the relation that maps each element of $\{0, 1, 2, ..., n\}$ onto a unique element of $\{0, 1, 2, ..., n\}$. Traveling salesman is leaving city j for city k.

 $\{0, 1, 2, 3\} \rightarrow \{2, 1, 3, 0\}$

Swap I(j,k) applied to a permutation ϕ produces another permutation ϕ' by affecting only the assignments of j and k and leaving the others unchanged.

$$\begin{aligned} \phi'(k) &= \phi(j) \\ \phi'(j) &= \phi(k) \\ \phi'(l) &= \phi(l), \quad l \neq j , k \end{aligned}$$

Lemma. If the swap causes two arrows that did nor cross earlier to cross, then the cost of the tour $C_{\phi}^{\{[bj,bk]n[a\phi,b\phi]\}}$ increases and vice versa.

$$C\phi I(j,k) = \left\| \left[b_{j}, b_{k} \right] \cap \left[a_{\phi(j)}, b_{\phi(k)} \right] \right\|.$$

Here, $\|[a,b]\| = 2(b-a)$ if $b \ge a$ 2 (a-b) if b < a • Lemma. An optimal permutation mapping ϕ^* is obtained if :

bj \leq bk implies that $a \phi(j) \leq a \phi(k)$.

- This is an optimal permutation mapping and not necessary a feasible tour.
- ϕ^* might consist p distinct sub tours.
- A swap on i & j, belonging to different sub-tours, will cause them to cross each other and thus coalesce into one and increase the cost.
- Hence we select the cheapest arc that connects two of the p sub-tours and so on.

• Lemma. The collection of arcs that connect the undirected graph with the least cost contain only arcs that connect city j to city j+1.

Consider k > j+1.

$$C\phi I(j,k) = \| [b_{j},b_{k}] \cap [a_{\phi(j)},b_{\phi(k)}] \|$$

$$\geq \sum_{i} \| [b_{i},b_{i+1}] \cap [a_{\phi^{*}(i)},b_{\phi^{*}(i+1)}] \|$$

for i=j,...., k-1

Hence the cost of swapping two nonadjacent arrows is at least equal to the cost of swapping all arrows between them.

• Here no arrows are allowed to cross. But in order to connect two sub-tours this condition might not be valid.

University at Buffalo

$$C_{\phi} I(1,2) = \| [1,4] \cap [2,3] \| = 2(3-2) = 2$$

$$C_{\phi} I(2,3) = \| [4,6] \cap [3,8] \| = 2(6-4) = 4$$

I(2,3) then I(1,2) $C\phi I(2,3) = \| [4,6] \cap [3,8] \| = 2(6-4) = 4$ $C\phi I(1,2) = \| [1,4] \cap [2,8] \| = 2(4-2) = 4$

Here cost increased.

A node is of Type 1if $b_j \leq a_{\phi(j)}$ (arrow points up)A node is of Type 2if $b_j > a_{\phi(j)}$ (arrow points down)

A swap is of *Type 1* if lower node is of *Type 1* A swap is of *Type 2* if lower node is of *Type 2*

- If swaps I(j, j+1) of **Type 1** are performed in decreasing order of the node indices, followed by swaps of **Type 2** in increasing order of the node indices
- then a single tour is obtained without changing any $C_{\phi^*} I(j, j+1)$ involved in the swaps

<u>Algorithm + Example</u>

7 jobs

<u>Step 1</u>.

Arrange the b_j in order of size and renumber the jobs so that $b_1 \le b_2 \le \dots \le b_n$

Arrange the a_i in order of size.

The permutation mapping ϕ^* is defined by $\phi^*(j) = k$, k being such that a_k is the *j*th smallest of the a.

jobs1234567
$$b_j$$
131519263140 a_j 741645223418 $a_{\phi^*}(j)$ 471618223445 $\phi^*(j)$ 2137564

University at Buffalo

<u>Step 2</u>.

Form an undirected graph with *n* nodes and undirected arcs connecting the *j*th and $\phi^*(j)$ nodes, j=1,...n.

If the current graph has only one component then STOP; otherwise go to Step 3.

<u>Step 3</u>.

Compute the swap costs $C_{\phi} * I(j, j+1)$ for j=1,...,n $C_{\phi} * I(j, j+1) = 2 \max \left(\min (b_{j+1}, a_{\phi} * (j+1)) - \max (b_j, a_{\phi} * (j)) \right), 0 \right)$

$$C_{\phi^*} I(1, 2) = 2 \max ((3-4), 0) = 0$$

$$C_{\phi^*} I(2, 3) = 2 \max ((15-7), 0) = 16$$

$$C_{\phi^*} I(3, 4) = 2 \max ((18-16), 0) = 4$$

$$C_{\phi^*} I(4, 5) = 2 \max ((22-19), 0) = 6$$

$$C_{\phi^*} I(5, 6) = 2 \max ((31-26), 0) = 10$$

$$C_{\phi^*} I(6, 7) = 2 \max ((40-34), 0) = 12$$

<u>Step 4</u>.

Select the smallest value $C_{\phi^*} I(j, j+1)$ such that *j* is in one component and *j*+1 in another. In case of a tie for smallest, choose any.

Insert the undirected arc $R_{j,j+1}$ into the graph. Repeat this step until all the components in the undirected graph are connected.

<u>Step 5</u>.

Divide the arcs added in Step 4 into two groups.

Those $R_{j,j+1}$ for which $b_j \le a_{\phi(j)}$ go in group 1, those for which $b_j > a_{\phi(j)}$ go in group 2.

arcs	b_j	$a_{\phi^{*(j)}}$	group
$R_{2, 3}$	$b_2 = 3$	$a_1=7$	1
$R_{3, 4}$	<i>b</i> ₃ =15	$a_3 = 16$	1
$R_{4, 5}$	<i>b</i> ₄ =19	$a_7 = 18$	2
$R_{5, 6}$	<i>b</i> ₅ =26	<i>a</i> ₅ =22	2

<u>Step 6</u>.

Find the largest index j_1 such that R_{j_1}, j_{1+1} is in group 1. Find the second largest index, and so on, up to j_1 assuming there are *l* elements in the group.

Find the smallest index k_1 such that R_{k_1} , k_{1+1} is in group 2. Find the second smallest index, and so on, up to k_m assuming there are *m* elements in the group.

$$j_1 = 3, \ j_2 = 2,$$
 $k_1 = 4, \ k_2 = 5$
University at Buffalo IE661 Scheduling Theory

<u>Step 7</u>.

The optimal tour ϕ^{**} is constructed by applying the following sequence of swaps on the permutation $\phi^{*:}$

$$\phi^{**} = \phi^{*} I(j_{1}, j_{1}+1) I(j_{2}, j_{2}+1) \dots I(j_{l}, j_{l}+1)$$
$$I(k_{1}, k_{1}+1) I(k_{2}, k_{2}+1) \dots I(k_{m}, k_{m}+1)$$

$$\phi^{**} = \phi^* I(3,4) I(2,3) I(4,5) I(5,6)$$

Type 1Type 2

 \sim -- \sim --

 $\phi^* I(3,4) I(2,3)$

 $\phi^* I(3,4) I(2,3) I(4,5)$

$\phi^{**} = \phi^* I(3,4) I(2,3) I(4,5) I(5,6)$ The <u>optimal tour</u> is: $1 \rightarrow 2 \rightarrow 7 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 1$

The <u>cost</u> of the tour is: 3 + 15 + 5 + 3 + 8 + 15 + 8 = 57

University at Buffalo