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té Chapter 2: Deterministic Models
Preliminaries

e Processing time p;
o Release dater,

o Due date d;

o Welght Wj

e Notation

o l|Bly
» oo Machine environment

» B Processing characteristics and constraints
» v Objective

University at Buffalo (SUNY) Department of Industrial Engineering



té Chapter 2: Deterministic Models
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e o Machine environment
» Single machine (1)
» ldentical machines in parallel (Pm)
» Machines in parallel with different speeds (Qm)
» Unrelated machines in parallel (Rm)
» Flow shop (Fm) (m machines in series)

» Flexible flow shop (FFc) (c stages with poss.
|dentical machines)

» Job shop (Jm) (recrc for recirculation in 3 field)
» Flexible job shop (FJc)

» Open shop (Om) (scheduler can determine route)
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e [3 Processing characteristics and constraints
» Release dates (r,)

Sequence dependent setup times (s;)

Machine specific sequence dependent setup times (s;)

Premeptions (prmp)

Precedence constraints (prec)

Breakdowns (brkdwn)

Machine eligibility restrictions (M,)

Permutation (prmu)

Blocking (block)

No-wait (nwt)

Recirculation (recrc)

VYV VYV VYV VY VYV VY
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e vy Objective
» Makespan (C,,.,)
» Max lateness (L,); L, =G, - d,
> Total weighted completion time ( 2.,C, )
> Discounted total weighted completion time ( > w,(1—-¢ "))
> Total weighted tardiness ( > w7, )
> Weighted number of tardy jobs ( >, wU, )

e Examples
o FM|p;=p;| Ywc
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e Classes of Schedules

» Nondelay Schedule: A feasible schedule is called
non-delay if no machine is kept idle while an
operation is waiting for processing (i.e., it prohibits
unforced idleness).

» A scheduling anomaly: Consider a P2 | prec | C
with the following processing times

. 1112 13 14 |56 |7 18 |9 [1

pi 18 |7 |7 |2 |13 12 |2 8 [8 |0
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Figure 2.2 Precedence constraints graph for Example 2.3.2.
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Figure 2.3  Gantt charts of nondelay sch
(b) processing times one unit less, and (c)

three machines.
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e Classes of Schedules

» Active Schedule: A feasible schedule is called active if it is
not possible to construct another schedule by changing the
order of processing on the machines and having at least one
operation finishing earlier and no operation finishing later.

> Semi-active Schedule: A feasible schedule is called semi-
active if no operation can be completed earlier without
changing the order of processing on any one of the
machines.

Optimal
schedule

X Nondelay ) Active

All schedules
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Figure 2.7 Complexity hierarchies of deterministic scheduling prob-
lems: (1) machine environments, (b) processing restrictions and con-
straints, and (c) objective functions.
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o Complexity hierarchy for Makespan (Fig. 2.8)
and Maximum Lateness problems (Fig. 2.9)
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28 C lexity hierarchy of problems in Example Figure 2.9 Complexity hierarchy of probletns in Example 24.2.
Figure 2. omplexity
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