Algorithm Problem $O2||C_{max}|$

1. $I = \text{set of jobs with } p_{1j} \leq p_{2j}; J = \text{set of remaining jobs};$

2. IF $p_{1r} = \max\{\max_{j \in I} p_{1j}, \max_{j \in J} p_{2j}\}$ then

• order on M_1 : $(I \setminus \{r\}, J, r)$; order on M_2 : $(r, I \setminus \{r\}, J)$

1

• r first on M_2 , than on M_1 ; all other jobs vice versa

Algorithm Problem $O2||C_{max}|$

1. $I = \text{set of jobs with } p_{1j} \leq p_{2j}; J = \text{set of remaining jobs};$ 2. IF $p_{1r} = \max\{\max_{j \in I} p_{1j}, \max_{j \in J} p_{2j}\}$ then • order on M_1 : $(I \setminus \{r\}, J, r)$; order on M_2 : $(r, I \setminus \{r\}, J)$ • r first on M_2 , than on M_1 ; all other jobs vice versa 3. ELSE IF $p_{2r} = \max\{\max_{j \in I} p_{1j}, \max_{j \in J} p_{2j}\}$ then • order on M_1 : $(r, J \setminus \{r\}, I)$; order on M_2 : $(J \setminus \{r\}, I, r)$ • r first on M_1 , than on M_2 ; all other jobs vice versa _1_

 \mathbf{N}

Remarks Algorithm Problem $O2||C_{max}|$

- complexity: O(n)
- algorithm solves problem $O2||C_{max}$ optimally

-2-

• Proof builds on fact that C_{max} is either

$$-\sum_{j=1}^{n} p_{1j} \text{ or}$$
$$-\sum_{j=1}^{n} p_{2j} \text{ or}$$
$$-p_{1r} + p_{2r}$$

Remarks Algorithm Problem $O2||C_{max}|$

- complexity: O(n)
- algorithm solves problem $O2||C_{max}$ optimally

-2-

• Proof builds on fact that C_{max} is either

$$-\sum_{j=1}^{n} p_{1j} \text{ or}$$
$$-\sum_{j=1}^{n} p_{2j} \text{ or}$$
$$-p_{1r} + p_{2r}$$

Problem $O3||C_{max}|$

• Problem $O3||C_{max}$ is NP-hard Proof as Exercise (Reduction using PARTITION)

Problem $O|pmtn|C_{max}$

- define $ML_i := \sum_{j=1}^n p_{ij}$ (load of machine *i*)
- define $JL_j := \sum_{i=1}^m p_{ij} \text{ (load of job } j)$
- $LB := \max\{\max_{i=1}^{m} ML_i, \max_{j=1}^{n} JL_j\}$ is a lower bound on C_{max}

-3-

Problem $O|pmtn|C_{max}$

- define $ML_i := \sum_{j=1}^n p_{ij}$ (load of machine *i*)
- define $JL_j := \sum_{i=1}^m p_{ij} \text{ (load of job } j)$
- $LB := \max\{\max_{i=1}^{m} ML_i, \max_{j=1}^{n} JL_j\}$ is a lower bound on C_{max}

-3-

- <u>Theorem</u>: For problem $O|pmtn|C_{max}$ a schedule with $C_{max} = LB$ exists.
- Proof of the theorem is constructive and leads to a polynomial algorithm for problem $O|pmtn|C_{max}$

Notations for Algorithm $O|pmtn|C_{max}$

- job j (machine i) is called tight if $JL_j = LB (ML_i = LB)$
- job j (machine i) has slack if $JL_j < LB$ ($ML_i < LB$)
- a set D of operataions is called a decrementing set if it contain for each tight job and machine exactly one operation and for each job and machine with slack at most one operation
- <u>Theorem</u>: A decrementing set always exists and can be calculated in polynomial time

(Proof based on maximal cardinality matchings; see e.g. P. Brucker: Scheduling Algorithms)

Open Shop models <u>Algorithm $O|pmtn|C_{max}$ </u> REPEAT

- 1. Calculate a decrementing set D;
- 2. Calculate maximum value Δ with

•
$$\Delta \leq \min_{(i,j) \in D} p_{ij}$$

• $\Delta \leq LB - ML_i$ if machine *i* has slack and no operation in *D*

-5-

- $\Delta \leq LB JL_j$ if job j has slack and no operation in D;
- 3. schedule the operations in D for Δ time units in parallel;
- 4. Update values p, LB, JL, and ML

UNTIL all operations have been completely scheduled.

Correctness Algorithm $O|pmtn|C_{max}$

- after an iteration we have: $LB_{new} = LB_{old} \Delta$
- \bullet in each iteration a time slice of Δ time units is scheduled
- \bullet the algorithm terminates after at most nm(n+m) iterations since in each iteration either

-6-

- $-\operatorname{an}$ operation gets completely scheduled or
- $-\,{\rm one}$ additional machine or job gets tight

Example Algorithm $O|pmtn|C_{max}$

-7-

	p	ML
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11
p	3 1 2 3	9
	2 3 3 2	10
JL	7887	LB = 11

Lecture 7

Example Algorithm $O|pmtn|C_{max}$

-7-

$\Delta = 3$	p	ML
	2 4 3 2	11
p	$\begin{array}{c} 2 & 4 & 3 & 2 \\ \hline 3 & 1 & 2 & 3 \end{array}$	9
	2 3 3 2	10
JL	7887	LB = 11

Example Algorithm $O|pmtn|C_{max}$

p $\Delta = 3$ ML2 M_3 2 4 3 2 11 M_2 1 3 1 2 3 9 p M_1 3 10 2 3 3 2 3 $JL \quad 7 \; 8 \; 8 \; 7 \; LB = 11$

-7-

Example Algorithm $O|pmtn|C_{max}$

 $\Delta = 3$ MLp2 M_3 2 4 3 2 11 M_2 1 9 3 1 2 3 p M_1 3 2 3 3 2 10 3 7887LB = 11JLMLp2 8 $2\ 4\ 0$ 0 1 2 3 6 p7 $2\ 0\ 3\ 2$ JL | 4 5 5 7 | LB = 8

-7-

Example Algorithm $O|pmtn|C_{max}$

p $\Delta = 3$ ML2 M_3 2 4 3 2 11 M_2 1 3 1 2 3 9 p M_1 3 2 3 3 2 10 3 7887LB = 11JL $\Delta = 1$ MLp2 M_3 2 4 0 2 8 M_2 1 6 0 1 2 3 p M_1 3 27 2 0 3 2 3 4 $JL \quad 4 5 5 7 \ LB = 8$

-7-

Example Algorithm $O|pmtn|C_{max}$

 $\Delta = 1$ MLp2 M_3 2 4 0 2 8 M_2 1 6 $0\ 1\ 2\ 3$ p M_1 3 2 2 0 3 27 3 4 $JL \ 4 \ 5 \ 5 \ 7 \ LB = 8$ $\Delta = 3$ MLp2 M_3 3 2 3 0 2 7 4 M_2 1 6 0 1 2 3 p M_1 3 2 2 2 0 3 2 73 4 7 $JL \ 4 \ 4 \ 5 \ 7 \ LB = 7$

-7-

Example Algorithm $O|pmtn|C_{max}$

$\Delta =$	3 p	ML	M_3	2		3		
	2 3 0 2	7	M_2	1		4	-	
p	0 1 2 3	6	M_1	3	2	2	_	
	2 0 3 2	7		e e	3 4	1	7	
JL	4 4 5 7	LB = 7						
۸						ſ	_	1
$\Delta =$	L	ML	M_3	2		3	1	
$\Delta =$	$\begin{array}{c c} 2 & p \\ \hline 2 & 0 & 0 & 2 \end{array}$	$\frac{ML}{4}$	M_3 M_2	2		3	1 3	
$\Delta = p$	L		-	2 1 3	2			
	2002	4	M_2	1 3	2	4	3)

-7-

Example Algorithm $O|pmtn|C_{max}$

$\Delta = 2$	$2 \qquad p$	ML	M_3	2		3	1	
	2 0 0 2	4	M_2	1	-	4	3	-
p	0 1 2 0	3	M_1	3	2	2	4	
	2 0 0 2	4			34		7 9)
JL	4 1 2 4	LB = 4						
Λ 1	r				ז ר		1	
$\Delta = 1$	l p	ML	M_3	2		3	1	4
$\Delta = 1$	$\begin{array}{c c} 1 & p \\ \hline 2 & 0 & 0 & 0 \end{array}$	$\frac{ML}{2}$	M_3 M_2	2		3	1 3	4
$\frac{\Delta = 1}{p}$			-	2 1 3	2		1 3 4	4
	$\begin{array}{c c} 2 & 0 & 0 \\ \hline \end{array}$		M_2	1 3	2	4	4	4 1 9 10

-7-

Example Algorithm $O|pmtn|C_{max}$

$\Delta = 1$	p	ML	M_3	2		3	1	4
	2 0 0 0	2	M_2	1		4	3	
p	$0 \ 1 \ 0 \ 0$	1	M_1	3	2	2	4	1
	0 0 0 2	2			3 4	,	7 9	9 10
JL	$2 \ 1 \ 0 \ 2$	LB = 2						
A 1	1							
$\Lambda = 1$							1	
$\Delta = 1$	<i>p</i>	ML	M_3	2		3	1	4 4
$\Delta = 1$	$\begin{array}{c} p \\ 1 & 0 & 0 \end{array}$	$\frac{ML}{1}$	$egin{array}{c} M_3 \ M_2 \end{array}$	2		3 4	1 3	4 4
$\underline{\Delta = 1}$	1 0 0 0	$\frac{ML}{1}$	-	2 1 3	2		_	
	1 0 0 0	ML 1 1 1	M_2	1 3	2	4	3	2

-7-

Lecture 7

Final Schedule Example Algorithm $O|pmtn|C_{max}$

	p	ML
	2 4 3 2	11
p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9
	2 3 3 2	10
JL	7887	LB = 11

-8-

- 6 iterations
- $C_{max} = 11 = LB$
- sequence of time slices may be changed arbitrary

Problem $J2||C_{max}|$

- I_1 : set of jobs only processed on M_1
- I_2 : set of jobs only processed on M_2
- I_{12} : set of jobs processed first on M_1 and than on M_2

1

- I_{21} : set of jobs processed first on M_2 and than on M_1
- π_{12} : optimal flow shop sequence for jobs from I_{12}
- π_{21} : optimal flow shop sequence for jobs from I_{21}

Algorithm Problem $J2||C_{max}|$

1. on M_1 first schedule the jobs from I_{12} in order π_{12} , than the jobs from I_1 , and last the jobs from I_{21} in order π_{21}

-2-

2. on M_2 first schedule the jobs from I_{21} in order π_{21} , than the jobs from I_2 , and last the jobs from I_{12} in order π_{12}

Algorithm Problem $J2||C_{max}|$

1. on M_1 first schedule the jobs from I_{12} in order π_{12} , than the jobs from I_1 , and last the jobs from I_{21} in order π_{21}

-2-

2. on M_2 first schedule the jobs from I_{21} in order π_{21} , than the jobs from I_2 , and last the jobs from I_{12} in order π_{12}

<u>Theorem</u>: The above algorithm solves problem $J2||C_{max}$ optimally in $O(n \log(n))$ time. Proof: almost straightforward!

Problem $J || C_{max}$

- as a generalization of $F||C_{max}$, this problem is NP-hard
- it is one of the most treated scheduling problems in literature
- \bullet we presented
 - $-\operatorname{a}$ branch and bound approach
 - $-\,\mathrm{a}$ heuristic approach called the Shifing Bottleneck Heuristic

for problem $J||C_{max}$ which both depend on the disjunctive graph formulation

-2-

Base of Branch and Bound

- The set of all active schedules contains an optimal schedule
- Solution method: Generate all active schedules and take the best
- Improvement: Use the generation scheme in a branch and bound setting

-3-

- Consequence: We need a generation scheme to produce all active schedules for a job shop
- $\bullet \to$ Approach: extend partial schedules

Generation of all active schedules

- Notations: (assuming that already a partial schedule S is given)
 - $-\,\Omega:$ set of all operations which predecessors have already been scheduled in S

-4-

- $-r_{ij}$:earliest possible starting time of operation (i, j) ∈ Ω w.r.t. S -Ω': subset of Ω
- \bullet Remark: r_{ij} can be calculated via longest path calculations in the disjunctive graph belonging to S

Generation of all active schedules (cont.)

- 1. (Initial Conditions)
 - $\Omega := \{ \text{first operations of each job} \}; r_{ij} := 0 \text{ for all } (i, j) \in \Omega;$
- 2. (Machine selection) Compute for current partial schedule $t(\Omega) := \min_{(i,j)\in\Omega} \{r_{ij} + p_{ij}\};$ $i^* :=$ machine on which minimum is achieved;

-5-

3. (Branching) $\Omega' := \{(i^*, j) | r_{i^*j} < t(\Omega)\}$ FOR ALL $(i^*, j) \in \Omega'$ DO

(a) extend partial schedule by scheduling (i^*, j) next on machine i^* ; (b) delete (i^*, j) from Ω ;

(c) add job-successor of (i^*, j) to Ω ;

(d) Return to Step 2

Job Shop models <u>Generation of all active schedules - example</u> Jobs: 1 (3,1) \rightarrow (2,1) \rightarrow (1,1) $p_{31} = 4, p_{21} = 2, p_{11} = 1$ 2 (1,2) \rightarrow (3,2) $p_{12} = 3, p_{32} = 3$ 3 (2,3) \rightarrow (1,3) \rightarrow (3,3) $p_{23} = 2, p_{13} = 4, p_{33} = 1$

-6-

Partial Schedule:

Generation of all active schedules - example

Jobs: 1 (3,1)
$$\rightarrow$$
 (2,1) \rightarrow (1,1) $p_{31} = 4, p_{21} = 2, p_{11} = 1$
2 (1,2) \rightarrow (3,2) $p_{12} = 3, p_{32} = 3$
3 (2,3) \rightarrow (1,3) \rightarrow (3,3) $p_{23} = 2, p_{13} = 4, p_{33} = 1$

Partial Schedule:

-6-

<u>Generation of all active schedules - example (cont.)</u>

Partial Schedule:

$$\begin{split} \Omega &= \{(1,1), (3,2), (1,3)\};\\ r_{11} &= 6, r_{32} = 4, r_{13} = 3;\\ t(\Omega) &= \min\{6+1, 4+3, 3+4\} = 7;\\ i^* &= M1;\\ \Omega' &= \{(1,1), (1,3)\} \end{split}$$

-7-

Extended partial schedules:

<u>Remarks on the generation</u>:

- the given algorithm is the base of the branching
- nodes of the branching tree correspond to partial schedules
- Step 3 branches from the node corresponding to the current partial schedule

-8-

- the number of branches is given by the cardinality of Ω'
- \bullet a branch corresponds to the choice of an operation (i^*,j) to be schedules next on machine i^*
 - \rightarrow a branch fixes new disjunctions

Scheduling

<u>Consequence</u>: Each node in the branch and bound tree is characterized by a set S' of fixed disjunctions

Lower bounds for nodes of the branch and bound tree

- Consider node V with fixed disjunctions S':
- Simple lower bound:
 - calculate critical path in G(S')
 - \rightarrow Lower bound LB(V)

Lower bounds for nodes of the branch and bound tree

- Consider node V with fixed disjunctions S':
- Simple lower bound:
 - calculate critical path in G(S')
 - \rightarrow Lower bound LB(V)
- Better lower bound:
 - $-\operatorname{consider}$ machine i
 - allow parallel processing on all machines $\neq i$
 - $-\operatorname{solve}$ problem on machine i

1-machine problem resulting for better LB

1. calculate earliest starting times r_{ij} of all operations (i, j) on machine i (longest paths from source in G(S'))

-11-

- 2. calculate minimum amount q_{ij} of time between end of (i, j) and end of schedule (longest path to sink in G(S'))
- 3. solve single machine problem on machine i:
 - \bullet respect release dates
 - no preemption
 - minimize maximum value of $C_{ij} + q_{ij}$

<u>Result</u>: head-body-tail problem (see Lecture 3)

Better lower bound

• solve 1-machine problem for all machines

-12-

• this results in values f_1, \ldots, f_m

•
$$LB^{new}(V) = \max_{i=1}^{m} f_i$$

Better lower bound

- solve 1-machine problem for all machines
- this results in values f_1, \ldots, f_m
- $LB^{new}(V) = \max_{i=1}^{m} f_i$

<u>Remarks</u>:

- 1-machine problem is NP-hard
- \bullet computational experiments have shown that it pays of to solve these m NP-hard problems per node of the search tree

-12-

 \bullet 20 \times 20 job-shop instances are already hard to solve by branch and bound

Job Shop models -13-<u>Better lower bound - example</u> Corresponding graph G(S'): Partial Schedule: 3,1 M_1 M_2 M_3 3 6 Conjunctive arcs fixed disj.

Scheduling

Job Shop models

Better lower bound - example (cont.) Graph G(S') with processing times:

 $LB(V){=}l(U,(1,2),(1,3),(3,3),V){=}8$

Better lower bound - example (cont.)

Graph G(S') with processing times:

Data for jobs on Machine 1:

-14-

Scheduling

Job Shop models

<u>Better lower bound - example (cont.)</u> Change p_{11} from 1 to 2!

2 3 3,2) 3 2 4

LB(V) = l(U, (1, 2), (1, 3), (3, 3), V)= l(U, (3, 1), (2, 1), (1, 1), V) = 8

Better lower bound - example (cont.) Change p_{11} from 1 to 2!

$$\begin{split} LB(V) &= l(U, (1, 2), (1, 3), (3, 3), V) \\ &= l(U, (3, 1), (2, 1), (1, 1), V) = 8 \end{split}$$

Data for jobs on Machine 1:

-15-

green blue red

$$r_{12} = 0$$
 $r_{13} = 3$ $r_{11} = 6$
 $q_{12} = 5$ $q_{13} = 1$ $q_{11} = 0$
Opt. solution:
 $OPT = 9, LB^{new}(V) = 9$
 M_1
 3
 7
 9