
Shop models: General Introduction -1-

Remark: Consider non preemptive problems with regular objectives

Notation Shop Problems:

• m machines, n jobs 1, . . . , n

• operations O = {(i, j)|j = 1, . . . , n; i ∈ M j ⊂ M := {1, . . . ,m}}
with processing times pij

• M j is the set of machines where job j has to be processed on

• PREC specifies the precedence constraints on the operations
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Notation Shop Problems:

• m machines, n jobs 1, . . . , n

• operations O = {(i, j)|j = 1, . . . , n; i ∈ M j ⊂ M := {1, . . . ,m}}
with processing times pij

• M j is the set of machines where job j has to be processed on

• PREC specifies the precedence constraints on the operations

• Flow shop: M j = M and
PREC = {(i, j) → (i + 1, j)|i = 1, . . . ,m − 1; j = 1, . . . , n}
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Notation Shop Problems:

• m machines, n jobs 1, . . . , n

• operations O = {(i, j)|j = 1, . . . , n; i ∈ M j ⊂ M := {1, . . . ,m}}
with processing times pij

• M j is the set of machines where job j has to be processed on

• PREC specifies the precedence constraints on the operations

• Flow shop: M j = M and
PREC = {(i, j) → (i + 1, j)|i = 1, . . . ,m − 1; j = 1, . . . , n}

• Open shop: M j = M and PREC = ∅

• Job shop: PREC contain a chain (i1, j) → . . . ,→ (i|M j|, j) for

each j
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Shop models: General Introduction -2-

Disjunctive Formulation of the constraints

• Cij denotes completion time of operation (i, j)

• PREC have to be respected:

L
ectu

re
6

S
ch

ed
u
lin

g
4



Shop models: General Introduction -2-

Disjunctive Formulation of the constraints

• Cij denotes completion time of operation (i, j)

• PREC have to be respected:

Cij − pij ≥ Ckl for all (k, l) → (i, j) ∈ PREC

• no two operations of the same job are processed at the same time:
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Disjunctive Formulation of the constraints

• Cij denotes completion time of operation (i, j)

• PREC have to be respected:

Cij − pij ≥ Ckl for all (k, l) → (i, j) ∈ PREC

• no two operations of the same job are processed at the same time:

Cij − pij ≥ Ckj or Ckj − pkj ≥ Cij for all i, k ∈ M j; i 6= k

• no two operations are processed jointly on the same machine:
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Disjunctive Formulation of the constraints

• PREC have to be respected:

Cij − pij ≥ Ckl for all (k, l) → (i, j) ∈ PREC

• no two operations of the same job are processed at the same time:

Cij − pij ≥ Ckj or Ckj − pkj ≥ Cij for all i, k ∈ M j; i 6= k

• no two operations are processed jointly on the same machine:

Cij − pij ≥ Cil or Cil − pil ≥ Cij for all (i, j), (i, l) ∈ O; j 6= l

• Cij − pij ≥ 0

• the ’or’ constraints are called disjunctive constraints

• some of the disjunctive constraints are ’overruled’ by the PREC

constraints
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Shop models: General Introduction -3-

Disjunctive Formulation - makes pan objective

min Cmax

s.t.

Cmax ≥ Cij (i, j) ∈ O

Cij − pij ≥ Ckl (k, l) → (i, j) ∈ PREC

Cij − pij ≥ Ckj or Ckj − pkj ≥ Cij i, k ∈ M j; i 6= k

Cij − pij ≥ Cil or Cil − pil ≥ Cij (i, j), (i, l) ∈ O; j 6= l

Cij − pij ≥ 0 (i, j) ∈ O
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Shop models: General Introduction -4-

Disjunctive Formulation - sum objective

min
∑

wjLj

s.t.

Lj ≥ Cij − dj (i, j) ∈ O

Cij − pij ≥ Ckl (k, l) → (i, j) ∈ PREC

Cij − pij ≥ Ckj or Ckj − pkj ≥ Cij i, k ∈ M j; i 6= k

Cij − pij ≥ Cil or Cil − pil ≥ Cij (i, j), (i, l) ∈ O; j 6= l

Cij − pij ≥ 0 (i, j) ∈ O

Remark:

• also other constraints, like e.g. release dates, can be incorporated

• the disjunctive constraints make the problem hard (lead to an ILP
formulation)
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Shop models: General Introduction -5-

Disjunctive Graph Formulation

• graph representation used to represent instances and solutions of shop
problems

• can be applied for regular objectives only
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Shop models: General Introduction -6-

Disjunctive Graph G = (V,C,D)

• V set of vertices representing the operations O

• a vertex is labeled by the corresponding processing time;

• Additionally, a source node 0 and a sink node ∗ belong to V ;
their weights are 0

• C set of conjunctive arcs reflecting the precedence constraints:
for each (k, l) → (i, j) ∈ PREC a directed arc belongs to C

• additionally 0 → O and O → ∗ are added to C

• D set of disjunctive arcs representing ’conflicting’ operations:
between each pair of operations belonging to the same job or to be pro-
cessed on the same machine, for which no order follows from PREC,
an undirected arc belongs to D
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Shop models: General Introduction -7-

Disjunctive Graph - Example Job Shop

• Data: 3 jobs, 3 machines;

M1 M2 M3

3

2 (1, 2) → (3, 2)

(3, 1) → (2, 1) → (1, 1)

(2, 3) → (1, 3) → (3, 3)

p31 = 4, p21 = 2, p11 = 1

p12 = 3, p32 = 3

p23 = 2, p13 = 4, p33 = 1

Jobs: 1
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Disjunctive Graph - Example Job Shop

3

2 (1, 2) → (3, 2)

(3, 1) → (2, 1) → (1, 1)

(2, 3) → (1, 3) → (3, 3)

p31 = 4, p21 = 2, p11 = 1

p12 = 3, p32 = 3

p23 = 2, p13 = 4, p33 = 1

Jobs: 1

• Graph:

0 ∗

Conjunctive arcs3,1 2,1

1,2

1,1

3,2

2,3 1,3 3,3

Disjunctive arcs
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Shop models: General Introduction -8-

Disjunctive Graph - Example Open Shop

• Data: 3 jobs, 3 machines;

3

2

Jobs: 1 (1, 1), (2, 1), (3, 1)

(1, 2), (2, 2), (3, 2)

(1, 3), (2, 3), (3, 3)

p11 = 4, p21 = 2, p31 = 1

p12 = 3, p22 = 1, p32 = 3

p13 = 2, p23 = 4, p33 = 1
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Disjunctive Graph - Example Open Shop

3

2

Jobs: 1 (1, 1), (2, 1), (3, 1)

(1, 2), (2, 2), (3, 2)

(1, 3), (2, 3), (3, 3)

p11 = 4, p21 = 2, p31 = 1

p12 = 3, p22 = 1, p32 = 3

p13 = 2, p23 = 4, p33 = 1

• Graph:

0 ∗

Conjunctive arcs2,1

1,2

3,3

Disjunctive arcs

1,1 3,1

2,2

1,3 2,3

3,2
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Shop models: General Introduction -9-

Disjunctive Graph - Selection

• basic scheduling decision for shop problems (see disj. formulation):
define an ordering for operations connected by a disjunctive arc

• → turn the undirected disjunctive arc into a directed arc

• selection S: a set of directed disjunctive arcs
(i.e. S ⊂ D together with a chosen direction for each a ∈ S)

• disjunctive arcs which have been directed are called ’fixed’

• a selection is a complete selection if

– each disjunctive arc has been fixed

– the graph G(S) = (V,C ∪ S) is acyclic
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Shop models: General Introduction -10-

Selection - Remarks

• a feasible schedule induces a complete selection

• a complete selection leads to sequences in which operations have to
be processed on machines

• a complete selection leads to sequences in which operations of a job
have to be processed

• Does each complete selection leads to a feasible schedule?
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Shop models: General Introduction -11-

Calculate a Schedule for a Complete Selection S

• calculated longest paths from 0 to all other vertices in G(S)

• Technical description:

– length of a path i1, i2, . . . , ir = sum of the weights of the vertices
i1, i2, . . . , ir

– calculate length lij of the longest path from 0 to (i, j) (using e.g.
Dijkstra)

– start operation (i, j) at time lij − pij (i.e. Cij = lij)

– the length of a longest path from 0 to ∗ (such paths are called
critical paths) is equal to the makespan of the schedule

• resulting schedule is the semiactive schedule which respects all prece-
dence given by C and S
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Shop models: General Introduction -12-

Reformulation Shop Problem

find a complete selection for which the corresponding schedule minimizes
the given (regular) objective function
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Flow Shop models: -1-

Makespan Minimization

• Lemma: For problem F ||Cmax an optimal schedule exists with

– the job sequence on the first two machines is the same

– the job sequence on the last two machines is the same

(Proof as Exercise)

• Consequence: For F2||Cmax and F3||Cmax an optimal solution ex-
ists which is a permutation solution

• For Fm||Cmax, m ≥ 4, instances exist where no optimal solution
exists which is a permutation solution
(Exercise)
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Flow Shop models: -2-

Problem F2||Cmax

• solution can be described by a sequence π

• problem was solved by Johnson in 1954

Johnson’s Algorithm:

1. L = set of jobs with p1j < p2j;

2. R = set of remaining jobs;

3. sort L by SPT w.r.t. the processing times on first machine (p1j)

4. sort R by LPT w.r.t. the processing times on second machine (p2j)

5. sequence L before R (i.e. π = (L,R) where L and R are sorted)
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Flow Shop models: -3-

Example solution problem F2||Cmax

• n = 5; p =

(

4 3 3 1 8
8 3 4 4 7

)
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Flow Shop models: -3-

Example solution problem F2||Cmax

• n = 5; p =

(

4 3 3 1 8
8 3 4 4 7

)

• L = {1, 3, 4}; R = {2, 5}

• sorting leads to L = {4, 3, 1}; R = {5, 2}
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Flow Shop models: -3-

Example solution problem F2||Cmax

• n = 5; p =

(

4 3 3 1 8
8 3 4 4 7

)

• L = {1, 3, 4}; R = {2, 5}

• sorting leads to L = {4, 3, 1}; R = {5, 2}

• π = (4, 3, 1, 5, 2)
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3 1 5
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Flow Shop models: -4-

Problem F2||Cmax

• Lemma 1: If
min{p1i, p2j} < min{p2i, p1j}

then job i is sequenced before job j by Johnson’s algorithm.

• Lemma 2: If job j is scheduled immediately after job i and

min{p1j, p2i} < min{p2j, p1i}

then swapping job i and j does not increase Cmax.

• Theorem: Johnson’s algorithm solves problem F2||Cmax optimal in
O(n log(n)) time.

(Proofs on the board)
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Flow Shop models: -5-

Problem F3||Cmax

• F3||Cmax is NP-hard in the strong sense

• Reduction using 3-PARTITION

• Proof on the board
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