
Parallel machine models: Makespan Minimization -1-

Problem P ||Cmax:

• m machines

• n jobs with processing times p1, . . . , pn

L
ectu

re
5

S
ch

ed
u
lin

g
1



Parallel machine models: Makespan Minimization -1-

Problem P ||Cmax:

• m machines

• n jobs with processing times p1, . . . , pn

• variable xij =

{

1 if job j is processed on machine i

0 else

• ILP formulation:

min Cmax

s.t.
∑n

j=1 xijpj ≤ Cmax i = 1, . . . ,m
∑m

i=1 xij = 1 j = 1, . . . , n

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n
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Parallel machine models: Makespan Minimization -2-

Problem P ||Cmax:

• in lecture 2: P2||Cmax is NP-hard

• P ||Cmax is even NP-hard in the strong sense (reduction from 3-
PARTITION); i.e. also pseudopolynomial algorithms are unlikely

• question: What happens if xij ∈ {0, 1} is relaxed?

L
ectu

re
5

S
ch

ed
u
lin

g
3



Parallel machine models: Makespan Minimization -2-

Problem P ||Cmax:

• in lecture 2: P2||Cmax is NP-hard

• P ||Cmax is even NP-hard in the strong sense (reduction from 3-
PARTITION); i.e. also pseudopolynomial algorithms are unlikely

• question: What happens if xij ∈ {0, 1} is relaxed?
answer: objective value of LP gets

∑n
j=1 pj/m

• question: is this the optimal value of P |pmtn|Cmax?
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Parallel machine models: Makespan Minimization -2-

Problem P ||Cmax:

• in lecture 2: P2||Cmax is NP-hard

• P ||Cmax is even NP-hard in the strong sense (reduction from 3-
PARTITION); i.e. also pseudopolynomial algorithms are unlikely

• question: What happens if xij ∈ {0, 1} in the ILP is relaxed?
answer: objective value of LP gets

∑n
j=1 pj/m

• question: is this the optimal value of P |pmtn|Cmax?
answer: No!
Example: m = 2, n = 2, p = (1, 2)
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Parallel machine models: Makespan Minimization -2-

Problem P ||Cmax:

• in lecture 2: P2||Cmax is NP-hard

• P ||Cmax is even NP-hard in the strong sense (reduction from 3-
PARTITION); i.e. also pseudopolynomial algorithms are unlikely

• question: What happens if xij ∈ {0, 1} in the ILP is relaxed?
answer: objective value of LP gets

∑n
j=1 pj/m

• question: is this the optimal value of P |pmtn|Cmax?
answer: No!
Example: m = 2, n = 2, p = (1, 2)

• add Cmax ≥ pj for j = 1, . . . ,m to ensure that each job has enough
time
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Parallel machine models: Makespan Minimization -3-

LP for problem P |pmtn|Cmax:

min Cmax

s.t.
n
∑

j=1
xijpj ≤ Cmax i = 1, . . . ,m

pj ≤ Cmax j = 1, . . . , n
m
∑

i=1
xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n
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Parallel machine models: Makespan Minimization -3-

LP for problem P |pmtn|Cmax:

min Cmax

s.t.
n
∑

j=1
xijpj ≤ Cmax i = 1, . . . ,m

pj ≤ Cmax j = 1, . . . , n
m
∑

i=1
xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n

• Optimal value of LP is max{maxn
j=1 pj,

∑n
j=1 pj/m}

• LP gives no schedule, thus only a lower bound!

• construction of a schedule: simple (next slide) or via open shop (later)
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Parallel machine models: Makespan Minimization -4-

Wrap around rule for problem P |pmtn|Cmax:

• define opt := max{maxn
j=1 pj,

∑n
j=1 pj/m}

• opt is a lower bound on the optimal value for problem P |pmtn|Cmax

• Construction of a schedule with Cmax = opt:
fill the machines successively, schedule the jobs in any order and pre-
empt a job if the time bound opt is met

• all jobs can be scheduled since opt ≥
∑n

j=1 pj/m

• no job is scheduled at the same time on two machines since opt ≥
maxn

j=1 pj
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Parallel machine models: Makespan Minimization -4-

Wrap around rule for problem P |pmtn|Cmax:

• Construction of a schedule with Cmax = opt:
fill the machines successively, schedule the jobs in any order and pre-
empt a job if the time bound opt is met

• all jobs can be scheduled since opt ≥
∑n

j=1 pj/m

• no job is scheduled at the same time on two machines since opt ≥
maxn

j=1 pj

• Example: m = 3, n = 5, p = (3, 7, 5, 1, 4)

M1

M2

M3

1 2

2 3

3 4 5

7
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Parallel machine models: Makespan Minimization -5-

Schedule construction via Open shop for P |pmtn|Cmax:

• given an optimal solution x of the LP, consider the following open
shop instance

– n jobs, m machines and pij := xijpj

• solve for this instance O|pmtn|Cmax
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Parallel machine models: Makespan Minimization -5-

Schedule construction via Open shop for P |pmtn|Cmax:

• given an optimal solution x of the LP, consider the open shop instance
n jobs, m machines and pij := xijpj

• solve for this instance O|pmtn|Cmax

• Result: solution for problem P |pmtn|Cmax

• for O|pmtn|Cmax we show later that an optimal solution has value

max{ n
max
j=1

m
∑

i=1

pij,
m

max
i=1

n
∑

j=1

pij}

and can be calculated in polynomial time

• Result: solution of O|pmtn|Cmax is optimal for P |pmtn|Cmax
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Parallel machine models: Makespan Minimization -6-

Uniform machines: Q|pmtn|Cmax:

• m machines with speeds s1, . . . , sm

• n jobs with processing times p1, . . . , pn

• change LP!
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Parallel machine models: Makespan Minimization -6-

Uniform machines: Q|pmtn|Cmax:

• m machines with speeds s1, . . . , sm

• n jobs with processing times p1, . . . , pn

min Cmax

s.t.
n
∑

j=1
xijpj/si ≤ Cmax i = 1, . . . ,m

n
∑

i=1
xijpj/si ≤ Cmax j = 1, . . . , n

m
∑

i=1
xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n
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Parallel machine models: Makespan Minimization -7-

Uniform machines: Q|pmtn|Cmax (cont.):

• since again no schedule is given, LP leads to lower bound for optimal
value of Q|pmtn|Cmax,

• as for P |pmtn|Cmax we may solve an open shop instance correspond-
ing to the optimal solution x of the LP with n jobs, m machines and
pij := xijpj/si

• this solution is an optimal schedule for Q|pmtn|Cmax
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Parallel machine models: Makespan Minimization -8-

Unrelated machines: R|pmtn|Cmax:

• m machines

• n jobs with processing times p1, . . . , pn

• speed sij

• change LP!
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Parallel machine models: Makespan Minimization -8-

Unrelated machines: R|pmtn|Cmax:

• m machines

• n jobs with processing times p1, . . . , pn and given speeds sij

min Cmax

s.t.
n
∑

j=1
xijpj/sij ≤ Cmax i = 1, . . . ,m

n
∑

i=1
xijpj/sij ≤ Cmax j = 1, . . . , n

m
∑

i=1
xij = 1 j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n
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Parallel machine models: Makespan Minimization -9-

Unrelated machines: R|pmtn|Cmax (cont.):

• same procedure as for Q|pmtn|Cmax!

– again no schedule is given,

– LP leads to lower bound for optimal value of R|pmtn|Cmax,

– for optimal solution x solve an corresponding open shop instance
with n jobs, m machines and pij := xijpj/sij

– this solution is an optimal schedule for R|pmtn|Cmax
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Parallel machine models: Makespan Minimization -10-

Approximation methods for: P ||Cmax:

• list scheduling methods (based on priority rules)

– jobs are ordered in some sequence π

– always when a machine gets free, the next unscheduled job in π is
assigned to that machine

• Theorem: List scheduling is a (2 − 1/m)-approximation for problem
P ||Cmax for any given sequence π

• Proof on the board

• Holds also for P |rj|Cmax
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Parallel machine models: Makespan Minimization -11-

Approximation methods for: P ||Cmax (cont.):

• consider special list

• LPT-rule (longest processing time first) is a natural candidate

• Theorem: The LPT-rule leads to a (4/3 − 1/3m)-approximation for
problem P ||Cmax

– Proof on the board uses following result:

– Lemma: If an optimal schedule for problem P ||Cmax results in at
most 2 jobs on any machine, then the LPT-rule is optimal

– Proof as Exercise

• the bound (4/3 − 1/3m) is tied (Exercise)
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Parallel machine models: Total Completion Time -1-

Parallel machines: P ||
∑

Cj:

• for m = 1, the SPT-rule is optimal (see Lecture 2)

• for m ≥ 2 a partition of the jobs is needed

• if a job j is scheduled as k-last job on a machine, this job contributes
kpj to the objective value
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Parallel machine models: Total Completion Time -1-

Parallel machines: P ||
∑

Cj:

• for m = 1, the SPT-rule is optimal (see Lecture 2)

• for m ≥ 2 a partition of the jobs is needed

• if a job j is scheduled as k-last job on a machine, this job contributes
kpj to the objective value

• we have m last positions where the processing time is weighted by 1,
m second last positions where the processing time is weighted by 2,
etc.

• use the n smallest weights for positioning the jobs
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Parallel machine models: Total Completion Time -1-

Parallel machines: P ||
∑

Cj:

• for m = 1, the SPT-rule is optimal (see Lecture 2)

• for m ≥ 2 a partition of the jobs is needed

• if a job j is scheduled as k-last job on a machine, this job contributes
kpj to the objective value

• we have m last positions where the processing time is weighted by 1,
m second last positions where the processing time is weighted by 2,
etc.

• use the n smallest weights for positioning the jobs

• assign job with the ith largest processing time to ith smallest weight
is optimal

• Result: SPT is also optimal for P ||
∑

Cj
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Parallel machine models: Total Completion Time -2-

Uniform machines: Q||
∑

Cj:

• if a job j is scheduled as k-last job on a machine Mr, this job con-
tributes kpj/sr = (k/sr)pj to the objective value;
i.e. job j gets ’weight’ (k/sr)

• for scheduling the n jobs on the m machines, we have weights

{ 1

s1
, . . . ,

1

sm
,

2

s1
, . . . ,

2

sm
, . . . ,

n

s1
, . . . ,

n

sm
}

• from these nm weights we select the n smallest weights and assign
the ith largest job to the ith smallest weight leading to an optimal
schedule
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Parallel machine models: Total Completion Time -3-

Example uniform machines: Q||
∑

Cj:

• n = 6, p = (6, 9, 8, 12, 4, 2)

• m = 3, s = (3, 1, 4)

• possible weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}

• 6 smallest weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}
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Parallel machine models: Total Completion Time -3-

Example uniform machines: Q||
∑

Cj:

• n = 6, p = (6, 9, 8, 12, 4, 2)

• m = 3, s = (3, 1, 4)

• 6 smallest weights:

{1

3
,
1

1
,
1

4
,
2

3
,
2

1
,
2

4
,
3

3
,
3

1
,
3

4
,
4

3
,
4

1
,
4

4
,
5

3
,
5

1
,
5

4
,
6

3
,
6

1
,
6

4
}

• sorted list of weights:

{1

4
,
1

3
,
2

4
,
2

3
,
3

4
,
4

4
}

• jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)
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Parallel machine models: Total Completion Time -3-

Example uniform machines: Q||
∑

Cj:

• n = 6, p = (6, 9, 8, 12, 4, 2)

• m = 3, s = (3, 1, 4)

• sorted list of weights:

{1

4
,
1

3
,
2

4
,
2

3
,
3

4
,
4

4
}

• jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)

• Schedule:

0 5

M1
M2

M3 6 5 3 4

1 2

L
ectu

re
5

S
ch

ed
u
lin

g
2
7



Parallel machine models: Total Completion Time -4-

Unrelated machines: R||
∑

Cj:

• if a job j is scheduled as k-last job on a machine Mr, this job con-
tributes kprj to the objective value;

• since now the ’weight’ is also job-dependent, we cannot simply sort
the ’weights’

• assignment problem:

– n jobs

– nm machine positions (k, r) (k-last position on Mr)

– assigning job j to (k, r) has costs kprj

– find an assignment of minimal costs of all jobs to machine positions

• leads to optimal solution of R||
∑

Cj in polynomial time
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Parallel machine models: Total Weighted Completion Time -1-

Parallel machines: P ||
∑

wjCj:

• Problem 1||
∑

wjCj is solvable via the WSPT-rule (Lecture 2)

• Problem P2||
∑

wjCj is . . .
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Parallel machine models: Total Weighted Completion Time -1-

Parallel machines: P ||
∑

wjCj:

• Problem 1||
∑

wjCj is solvable via the WSPT-rule (Lecture 2)

• Problem P2||
∑

wjCj is already NP-hard, but

• Problem P2||
∑

wjCj is pseudopolynomial solvable

• Problem P ||
∑

wjCj is NP-hard in the strong sense
Proof by reduction using 3-PARTITION as exercise

• Approximation:
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Parallel machine models: Total Weighted Completion Time -1-

Parallel machines: P ||
∑

wjCj:

• Problem 1||
∑

wjCj is solvable via the WSPT-rule (Lecture 2)

• Problem P2||
∑

wjCj is already NP-hard, but

• Problem P2||
∑

wjCj is pseudopolynomial solvable

• Problem P ||
∑

wjCj is NP-hard in the strong sense
Proof by reduction using 3-PARTITION as exercise

• Approximation: the WSPT-rule gives an 1
2(1 +

√
2) approximation

Proof is not given; uses fact that worst case examples have equal
wj/pj ratios for all jobs
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