-1-

- \bullet *m* machines
- n jobs with processing times p_1, \ldots, p_n

- m machines
- n jobs with processing times p_1, \ldots, p_n
- variable $x_{ij} = \begin{cases} 1 & \text{if job } j \text{ is processed on machine } i \\ 0 & \text{else} \end{cases}$
- ILP formulation:

$$\min \quad C_{max} \\ s.t. \quad \sum_{j=1}^{n} x_{ij} p_j \leq C_{max} \quad i = 1, \dots, m \\ \sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n \\ x_{ij} \in \{0, 1\} \quad i = 1, \dots, m; j = 1, \dots, n$$

-1-

- in lecture 2: $P2||C_{max}$ is NP-hard
- $P||C_{max}$ is even NP-hard in the strong sense (reduction from 3-PARTITION); i.e. also pseudopolynomial algorithms are unlikely

-2-

• question: What happens if $x_{ij} \in \{0, 1\}$ is relaxed?

- in lecture 2: $P2||C_{max}$ is NP-hard
- $P||C_{max}$ is even NP-hard in the strong sense (reduction from 3-PARTITION); i.e. also pseudopolynomial algorithms are unlikely

-2-

- question: What happens if $x_{ij} \in \{0, 1\}$ is relaxed? answer: objective value of LP gets $\sum_{j=1}^{n} p_j/m$
- question: is this the optimal value of $P|pmtn|C_{max}$?

- in lecture 2: $P2||C_{max}$ is NP-hard
- $P||C_{max}$ is even NP-hard in the strong sense (reduction from 3-PARTITION); i.e. also pseudopolynomial algorithms are unlikely

-2-

- question: What happens if $x_{ij} \in \{0, 1\}$ in the ILP is relaxed? answer: objective value of LP gets $\sum_{j=1}^{n} p_j/m$
- question: is this the optimal value of $P|pmtn|C_{max}$? answer: No!

Example: m = 2, n = 2, p = (1, 2)

- in lecture 2: $P2||C_{max}$ is NP-hard
- $P||C_{max}$ is even NP-hard in the strong sense (reduction from 3-PARTITION); i.e. also pseudopolynomial algorithms are unlikely

-2-

- question: What happens if $x_{ij} \in \{0, 1\}$ in the ILP is relaxed? answer: objective value of LP gets $\sum_{j=1}^{n} p_j/m$
- question: is this the optimal value of $P|pmtn|C_{max}$? answer: No!

Example: m = 2, n = 2, p = (1, 2)

• add $C_{max} \ge p_j$ for j = 1, ..., m to ensure that each job has enough time

- - -

$$\min \quad C_{max}$$

$$s.t. \quad \sum_{j=1}^{n} x_{ij} p_j \leq C_{max} \quad i = 1, \dots, m$$

$$p_j \leq C_{max} \quad j = 1, \dots, n$$

$$\sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n$$

$$x_{ij} \geq 0 \qquad i = 1, \dots, m; j = 1, \dots, n$$

-3-

-7

Parallel machine models: Makespan Minimization LP for problem $P|pmtn|C_{max}$:

$$\min \quad C_{max}$$

$$s.t. \quad \sum_{j=1}^{n} x_{ij} p_j \leq C_{max} \quad i = 1, \dots, m$$

$$p_j \leq C_{max} \quad j = 1, \dots, n$$

$$\sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n$$

$$x_{ij} \geq 0 \qquad i = 1, \dots, m; j = 1, \dots, n$$

-3-

- Optimal value of LP is $\max\{\max_{j=1}^n p_j, \sum_{j=1}^n p_j/m\}$
- LP gives no schedule, thus only a lower bound!
- construction of a schedule: simple (next slide) or via open shop (later)

- **Parallel machine models**: Makespan Minimization Wrap around rule for problem $P|pmtn|C_{max}$:
 - define $opt := \max\{\max_{j=1}^n p_j, \sum_{j=1}^n p_j/m\}$
 - opt is a lower bound on the optimal value for problem $P|pmtn|C_{max}$
 - Construction of a schedule with $C_{max} = opt$: fill the machines successively, schedule the jobs in any order and preempt a job if the time bound *opt* is met
 - all jobs can be scheduled since $opt \ge \sum_{j=1}^{n} p_j/m$
 - \bullet no job is scheduled at the same time on two machines since $opt \geq \max_{j=1}^n p_j$

Parallel machine models: Makespan Minimization Wrap around rule for problem $P|pmtn|C_{max}$:

- Construction of a schedule with $C_{max} = opt$: fill the machines successively, schedule the jobs in any order and preempt a job if the time bound *opt* is met
- all jobs can be scheduled since $opt \ge \sum_{j=1}^{n} p_j/m$
- no job is scheduled at the same time on two machines since $opt \geq \max_{j=1}^{n} p_j$
- Example: m = 3, n = 5, p = (3, 7, 5, 1, 4)

Parallel machine models: Makespan Minimization Schedule construction via Open shop for $P|pmtn|C_{max}$:

 \bullet given an optimal solution x of the LP, consider the following open shop instance

-5-

- -n jobs, m machines and $p_{ij} := x_{ij}p_j$
- solve for this instance $O|pmtn|C_{max}$

Parallel machine models: Makespan Minimization Schedule construction via Open shop for $P|pmtn|C_{max}$:

• given an optimal solution x of the LP, consider the open shop instance n jobs, m machines and $p_{ij} := x_{ij}p_j$

-5-

- solve for this instance $O|pmtn|C_{max}$
- <u>Result</u>: solution for problem $P|pmtn|C_{max}$
- for $O|pmtn|C_{max}$ we show later that an optimal solution has value

$$\max\{\max_{j=1}^{n}\sum_{i=1}^{m}p_{ij}, \max_{i=1}^{m}\sum_{j=1}^{n}p_{ij}\}\$$

and can be calculated in polynomial time

• <u>Result</u>: solution of $O|pmtn|C_{max}$ is optimal for $P|pmtn|C_{max}$

Parallel machine models: Makespan Minimization Uniform machines: $Q|pmtn|C_{max}$:

-6-

- m machines with speeds s_1, \ldots, s_m
- n jobs with processing times p_1, \ldots, p_n
- \bullet change LP!

- **Parallel machine models**: Makespan Minimization <u>Uniform machines: $Q|pmtn|C_{max}$ </u>:
 - m machines with speeds s_1, \ldots, s_m
 - n jobs with processing times p_1, \ldots, p_n

 $\min \qquad C_{max} \\ s.t. \quad \sum_{j=1}^{n} x_{ij} p_j / s_i \leq C_{max} \quad i = 1, \dots, m \\ \sum_{i=1}^{n} x_{ij} p_j / s_i \leq C_{max} \quad j = 1, \dots, n \\ \sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n \\ x_{ij} \geq 0 \qquad i = 1, \dots, m; j = 1, \dots, n \\ \end{cases}$

-6-

Parallel machine models: Makespan Minimization Uniform machines: $Q|pmtn|C_{max}$ (cont.):

• since again no schedule is given, LP leads to lower bound for optimal value of $Q|pmtn|C_{max}$,

-7-

- as for $P|pmtn|C_{max}$ we may solve an open shop instance corresponding to the optimal solution x of the LP with n jobs, m machines and $p_{ij} := x_{ij}p_j/s_i$
- this solution is an optimal schedule for $Q|pmtn|C_{max}$

Parallel machine models: Makespan Minimization Unrelated machines: $R|pmtn|C_{max}$:

-8-

- $\bullet~m$ machines
- n jobs with processing times p_1, \ldots, p_n
- speed s_{ij}
- change LP!

Parallel machine models: Makespan Minimization <u>Unrelated machines</u>: $R|pmtn|C_{max}$:

- \bullet *m* machines
- n jobs with processing times p_1, \ldots, p_n and given speeds s_{ij}

$$\min \qquad C_{max} \\ s.t. \sum_{j=1}^{n} x_{ij} p_j / s_{ij} \leq C_{max} \quad i = 1, \dots, m \\ \sum_{i=1}^{n} x_{ij} p_j / s_{ij} \leq C_{max} \quad j = 1, \dots, n \\ \sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n \\ x_{ij} \geq 0 \qquad i = 1, \dots, m; j = 1, \dots, n$$

-8-

Lecture 5

17

- **Parallel machine models**: Makespan Minimization Unrelated machines: $R|pmtn|C_{max}$ (cont.):
 - same procedure as for $Q|pmtn|C_{max}!$
 - again no schedule is given,
 - LP leads to lower bound for optimal value of $R|pmtn|C_{max}$,
 - for optimal solution x solve an corresponding open shop instance with n jobs, m machines and $p_{ij} := x_{ij}p_j/s_{ij}$

9

- this solution is an optimal schedule for $R|pmtn|C_{max}$

Parallel machine models: Makespan Minimization Approximation methods for: $P || C_{max}$:

- list scheduling methods (based on priority rules)
 - $-\operatorname{jobs}$ are ordered in some sequence π
 - always when a machine gets free, the next unscheduled job in π is assigned to that machine

-10-

- <u>Theorem</u>: List scheduling is a (2 1/m)-approximation for problem $P||C_{max}$ for any given sequence π
- Proof on the board
- Holds also for $P|r_j|C_{max}$

- **Parallel machine models**: Makespan Minimization Approximation methods for: $P||C_{max}$ (cont.):
 - consider special list
 - LPT-rule (longest processing time first) is a natural candidate
 - <u>Theorem</u>: The LPT-rule leads to a (4/3 1/3m)-approximation for problem $P||C_{max}$

-11-

- Proof on the board uses following result:
- <u>Lemma</u>: If an optimal schedule for problem $P||C_{max}$ results in at most 2 jobs on any machine, then the LPT-rule is optimal
- Proof as Exercise
- the bound (4/3 1/3m) is tied (Exercise)

- **Parallel machine models**: Total Completion Time Parallel machines: $P||\sum C_j$:
 - for m = 1, the SPT-rule is optimal (see Lecture 2)
 - for $m \ge 2$ a partition of the jobs is needed
 - \bullet if a job j is scheduled as k-last job on a machine, this job contributes kp_j to the objective value

1

- **Parallel machine models**: Total Completion Time Parallel machines: $P||\sum C_j$:
 - for m = 1, the SPT-rule is optimal (see Lecture 2)
 - for $m \ge 2$ a partition of the jobs is needed
 - \bullet if a job j is scheduled as k-last job on a machine, this job contributes kp_j to the objective value

1

- we have *m* last positions where the processing time is weighted by 1, *m* second last positions where the processing time is weighted by 2, etc.
- use the n smallest weights for positioning the jobs

- **Parallel machine models**: Total Completion Time <u>Parallel machines</u>: $P||\sum C_j$:
 - for m = 1, the SPT-rule is optimal (see Lecture 2)
 - for $m \ge 2$ a partition of the jobs is needed
 - \bullet if a job j is scheduled as k-last job on a machine, this job contributes kp_j to the objective value

1

- we have *m* last positions where the processing time is weighted by 1, *m* second last positions where the processing time is weighted by 2, etc.
- use the n smallest weights for positioning the jobs
- assign job with the ith largest processing time to ith smallest weight is optimal
- <u>Result</u>: SPT is also optimal for $P || \sum C_j$

23

- **Parallel machine models**: Total Completion Time Uniform machines: $Q || \sum C_j$:
 - if a job j is scheduled as k-last job on a machine M_r , this job contributes $kp_j/s_r = (k/s_r)p_j$ to the objective value; i.e. job j gets 'weight' (k/s_r)

-2-

 \bullet for scheduling the *n* jobs on the *m* machines, we have weights

$$\left\{\frac{1}{s_1},\ldots,\frac{1}{s_m},\frac{2}{s_1},\ldots,\frac{2}{s_m},\ldots,\frac{n}{s_1},\ldots,\frac{n}{s_m}\right\}$$

• from these nm weights we select the n smallest weights and assign the *i*th largest job to the *i*th smallest weight leading to an optimal schedule

- **Parallel machine models**: Total Completion Time <u>Example uniform machines</u>: $Q || \sum C_j$:
 - n = 6, p = (6, 9, 8, 12, 4, 2)
 - m = 3, s = (3, 1, 4)
 - possible weights:

1 ر	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6 ₁
$\{\frac{1}{3},$	$\frac{1}{1}$	$\overline{4}$ '	$\overline{3}$	1'	$\frac{1}{4}$	$\overline{3}$	$\frac{1}{1}$	$\frac{1}{4}$	$\overline{3}$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\frac{1}{4}$

-3-

• 6 smallest weights:

1 ر	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6 ₁
$1\frac{1}{3}$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\overline{4}$ '	$\overline{3}$	1'	$\overline{4}^{f}$									

- **Parallel machine models**: Total Completion Time Example uniform machines: $Q || \sum C_j$:
 - n = 6, p = (6, 9, 8, 12, 4, 2)
 - m = 3, s = (3, 1, 4)
 - 6 smallest weights:

1 ر	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6 ₁
$1\frac{1}{3}$	1'	$\frac{1}{4}$	$\overline{3}'$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\frac{1}{4}$	$\overline{3}$	1'	$\overline{4}$ '	$\overline{3}$	1'	$\overline{4}^{f}$

-3-

• sorted list of weights:

$$\{\frac{1}{4}, \frac{1}{3}, \frac{2}{4}, \frac{2}{3}, \frac{3}{4}, \frac{4}{4}\}$$

• jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)

- **Parallel machine models**: Total Completion Time <u>Example uniform machines</u>: $Q||\sum C_j$:
 - n = 6, p = (6, 9, 8, 12, 4, 2)
 - m = 3, s = (3, 1, 4)
 - sorted list of weights:

$$\{\frac{1}{4}, \frac{1}{3}, \frac{2}{4}, \frac{2}{3}, \frac{3}{4}, \frac{4}{4}\}$$

-3-

• jobs sorted by decreasing processing times: (4, 2, 3, 1, 5, 6)

27

- **Parallel machine models**: Total Completion Time <u>Unrelated machines</u>: $R||\sum C_j$:
 - if a job j is scheduled as k-last job on a machine M_r , this job contributes kp_{rj} to the objective value;

-4-

- since now the 'weight' is also job-dependent, we cannot simply sort the 'weights'
- assignment problem:
 - -n jobs
 - -nm machine positions (k, r) (k-last position on M_r)
 - assigning job j to (k, r) has costs $k p_{rj}$
 - find an assignment of minimal costs of all jobs to machine positions
- leads to optimal solution of $R||\sum C_j$ in polynomial time

- **Parallel machine models**: Total Weighted Completion Time -1-<u>Parallel machines</u>: $P||\sum w_j C_j$:
 - Problem $1 || \sum w_j C_j$ is solvable via the WSPT-rule (Lecture 2)
 - Problem $P2||\sum w_j C_j$ is ...

- **Parallel machine models**: Total Weighted Completion Time -1-<u>Parallel machines</u>: $P||\sum w_j C_j$:
 - Problem $1 || \sum w_j C_j$ is solvable via the WSPT-rule (Lecture 2)
 - Problem $P2||\sum w_j C_j$ is already NP-hard, but
 - Problem $P2||\sum w_jC_j$ is pseudopolynomial solvable
 - Problem $P||\sum w_j C_j$ is NP-hard in the strong sense Proof by reduction using 3-PARTITION as exercise
 - <u>Approximation</u>:

- **Parallel machine models**: Total Weighted Completion Time -1-<u>Parallel machines</u>: $P||\sum w_j C_j$:
 - Problem $1 || \sum w_j C_j$ is solvable via the WSPT-rule (Lecture 2)
 - Problem $P2||\sum w_j C_j$ is already NP-hard, but
 - Problem $P2||\sum w_j C_j$ is pseudopolynomial solvable
 - Problem $P||\sum w_j C_j$ is NP-hard in the strong sense Proof by reduction using 3-PARTITION as exercise
 - <u>Approximation</u>: the WSPT-rule gives an $\frac{1}{2}(1 + \sqrt{2})$ approximation Proof is not given; uses fact that worst case examples have equal w_j/p_j ratios for all jobs