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Single machine models: Number of Tardy Jobs -1-
Problem 1{| > U;:

e Structure of an optimal schedule:

—set 57 of jobs meeting their due dates

—set S5 of jobs being late

— jobs of Sy are scheduled before jobs from S5

— jobs from 57 are scheduled in EDD order

— jobs from S9 are scheduled in an arbitrary order

e Result: a partition of the set of jobs into sets S| and Sy is sufficient
to describe a solution
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Single machine models: Number of Tardy Jobs

Algorithm 1|[ Y U,

1. enumerate jobs such that dy < ... < dp;
2.51:=0; t:=0;

3. FOR j:=1 TO n DO

4. S1:=851U{j};t:=t+pj

5 IFt>d; THEN

6 Find job k with largest p;. value in Sy;
7. S1:= 81\ {k}; t =1t — py;

8 END

9. END




F 9IN300]

Surmpatpg

Single machine models: Number of Tardy Jobs -3-
Remarks Algorithm 1| U,

e Principle: schedule jobs in order of increasing due dates and always
when a job gets late, remove the job with largest processing time; all
removed jobs are late

e complexity: O(nlog(n))
e Example: n=5; p=(7,8,4,6,6); d=(9,17,18,19,21)
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Single machine models: Number of Tardy Jobs

Remarks Algorithm 1| U,

e Principle: schedule jobs in order of increasing due dates

and always

when a job gets late, remove the job with largest processing time; all

removed jobs are late
e complexity: O(nlog(n))
e Example: n=5; p=(7,8,4,6,6); d=(9,17,18,19,21)

3 4 D

0 D 10 15

e Algorithm 1[| > U; computes an optimal solution
Proot on the board
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Single machine models: Weighted Number of Tardy Jobs -1-

Problem 1{| > w,U;

e problem 1|} w;U; is NP-hard even if all due dates are the same;
1.€e. 1‘d]' — d‘ Z w]UJ is NP-hard
Proof on the board (reduction from PARTITION)

e priority based heuristic (WSPT-rule):
schedule jobs in decreasing w;/p; order
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Problem 1{| > w,U;

e problem 1|} w;U; is NP-hard even if all due dates are the same;
1.€e. 1‘d]' — d‘ Z w]UJ is NP-hard
Proof on the board (reduction from PARTITION)

e priority based heuristic (WSPT-rule):
schedule jobs in decreasing w;/p; order

e WSPT may perform arbitrary bad for 1|| > w;Uj:
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Single machine models: Weighted Number of Tardy Jobs -1-

Problem 1{| > w,U;

e problem 1|} w;U; is NP-hard even if all due dates are the same;
1.€e. 1‘d]' — d‘ Z w]UJ is NP-hard
Proof on the board (reduction from PARTITION)

e priority based heuristic (WSPT-rule):
schedule jobs in decreasing w;/p; order

e WSPT may perform arbitrary bad for 1| - w;U;
n=3p=(1,1,M); w= (1461, M—e€);d=(1+M,1+M,1+ M)

> wU;(WSPT)/ > w;Uj(opt) = (M —€)/(1+¢)
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Single machine models: Weighted Number of Tardy Jobs -2-

Dynamic Programming for 1|| » S w;U;

e assume d; < ... < dp

e as for 1|| > Uj; a solution is given by a partition of the set of jobs into
sets S1 and S9 and jobs in S are in EDD order

e Definition:

— Fj(t) := minimum criterion value for scheduling the first j jobs
such that the processing time of the on-time jobs is at most ¢

o Fp(T) with T'= 35 p; is optimal value for problem 1| > w;U;
e [nitial conditions:

oo fort<0;7=1,...,n
(t){ (1)

0 fort>0; 7=0
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Single machine models: Weighted Number of Tardy Jobs -3-

Dynamic Programming for 1] > w;U,; (cont.)

e if 0 <t < djand j is late in the schedule corresponding to F(t), we
have F](t) = Fj_l(t) +w;

¢ if 0 <t <d;and jis on time in the schedule corresponding to F};(t),
we have Fj(t> = Fj_l(t — p]')
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Single machine models: Weighted Number of Tardy Jobs -3-

Dynamic Programming for 1] > w;U,; (cont.)

e if 0 <t < djand j is late in the schedule corresponding to F(t), we
have F](t) = Fj_l(t) +w;

¢ if 0 <t <d;and jis on time in the schedule corresponding to F};(t),
we have Fj(t> = Fj_l(t — p]')
e summarizing, we get for 7 =1,...,n:

Fi(t) = {mm{Fjl(t —p;), Fi_1(t) +w;}  for 0 <t < d;

2
F](d]) for dj<t§T ( )
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Single machine models: Weighted Number of Tardy Jobs

DP-algorithm for 1| > w,;U;

1. initialize F';(t) according to (1)

2 FOR j = 1 TO n DO

3. FOR t:=0TO T DO

4. update F;(t) according to (2)
5. 2 w;Ui(OPT) = Fy(dy)

-
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Single machine models: Weighted Number of Tardy Jobs -4-

DP-algorithm for 1| > w,;U;

1. initialize F';(t) according to (1)

2 FOR j = 1 TO n DO

3. FOR t:=0TO T DO

4. update F;(t) according to (2)
5. 2 w;Ui(OPT) = Fy(dy)

e complexity is O(n ?:1 2

e thus, algorithm is pseudopolynomial
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Single machine models: Total Tardiness -1-

Basic results:

e 1|| )T} is NP-hard

e preemption does not improve the criterion value
— 1|pmtn| ) T} is NP-hard

e idle times do not improve the criterion value

e Lemma 1: It p; < pp and d; < dj, then an optimal schedule exist in
which job 7 is scheduled before job £.

Proof: exercise

e this lemma gives a dominance rule
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Single machine models: Total Tardiness -2-

Structural property for 1{| > T

e let £ be a fixed job and C’k be latest possible completion time of job
k in an optimal schedule

e define
i d; A for 7 # k
J max{dk, Ck} fOI‘j — k
e Lemma 2: Any optimal sequence w.r.t. ch, . ,cin 1s also optimal

Proof on the board
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Single machine models: Total Tardiness -3-

Structural property for 1] > T (cont.)

e let k be the job with pi. = max{py,...,pn}

e Lemma 1 implies that an optimal schedule exists where
{1,....k=1} =k

e Lemma 3: There exists an integer 0, 0 < 0 < n — k for which an
optimal schedule exist in which

{1,....k=1,k+1,...)k+0} 2 kand k —={k+d+1,...,n}.
Proof on the board
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Single machine models: Total Tardiness -4-
DP-algorithm for 1{| > T

e Definition:

— F(t) := minimum criterion value for scheduling the first j jobs
starting their processing at time ¢

e by Lemma 3 we get:
there exists some 6 € {1,...,j} such that F(t) is achieved by
scheduling
1. first jobs 1,...,k—1,k+1,...,k -+ 0 in some order
2. followed by job k starting at t + Y50 p; — py,
3. followed by jobs k +0 4+ 1,..., 7 in some order

where p;. = max{zl D
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Single machine models: Total Tardiness
DP-algorithm for 1] ) T (cont.)

{1,...,7}

N T

{L..,k=1k+1,.. . k+6} k| {k+d+1,...,5}

e Definition:

—J,Lk)={ilie {4, i +1,... [} < ppsi # k)
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Single machine models: Total Tardiness

DP-algorithm for 1] ) T (cont.)

.7}

N T

{1,....)k—1,k+1,....,k+4d} k

{k+o+1,...,5}

e Definition:

—J,Lk)={ilie {4, i +1,... [} < ppsi # k)

..

J1

N T

J(1,k + 6, k)

k

Jk+0+1,5,k)
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Single machine models: Total Tardiness -5-
DP-algorithm for 1] ) T (cont.)

{1,...,7}

N T

J(1,k+ 6, k) k | Jk+d+1,5,k)

e Definition:

—J,Lk)={ilie {4, i +1,... [} < ppsi # k)
—V(J(j,1,k),t) :== minimum criterion value for scheduling the jobs
from J(7,(, k) starting their processing at time ¢
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Single machine models: Total Tardiness
DP-algorithm for 1] ) T (cont.)

J(j, L, k)
' /\\
J(j, K+ 0,k kK| JK"+6+ 1,1, K
t Ci(6)

e we get:
V(J(j.1, k), t) = ming {V(J(j, K +6,K),¢)
+ maX{O, CW((S) — dk/}
+V(J(E +6+1,1,K),C(0)))}
where p;/ = max{p;-\j/ € J(j,l,k)} and
Cp(0) =t + D+ 2 jrev(a(j ko, Py
o V(0,1) =0, V{j} 1) = max{0, ¢ + p;j — d;}
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Single machine models: Total Tardiness -7-

DP-algorithm for 1] ) T (cont.)
e optimal value of 1|| ) T is given by V({1,...,n},0)

e complexity:
—at most O(n?) subsets J (4,1, k)

—at most ) p; values for ¢

— each recursion (evaluation V' (J(7,1,k),t)) costs O(n) (at most n
values for ¢)

total complexity: O(n*$" p;) (pseudopolynomial)




