
Single machine models: Number of Tardy Jobs -1-

Problem 1||
∑

Uj:

• Structure of an optimal schedule:

– set S1 of jobs meeting their due dates

– set S2 of jobs being late

– jobs of S1 are scheduled before jobs from S2

– jobs from S1 are scheduled in EDD order

– jobs from S2 are scheduled in an arbitrary order

• Result: a partition of the set of jobs into sets S1 and S2 is sufficient
to describe a solution

L
ectu

re
4

S
ch

ed
u
lin

g
1



Single machine models: Number of Tardy Jobs -2-

Algorithm 1||
∑

Uj

1. enumerate jobs such that d1 ≤ . . . ≤ dn;

2. S1 := ∅; t := 0;

3. FOR j:=1 TO n DO

4. S1 := S1 ∪ {j}; t := t + pj;

5. IF t > dj THEN

6. Find job k with largest pk value in S1;

7. S1 := S1 \ {k}; t := t − pk;

8. END

9. END

L
ectu

re
4

S
ch

ed
u
lin

g
2



Single machine models: Number of Tardy Jobs -3-

Remarks Algorithm 1||
∑

Uj

• Principle: schedule jobs in order of increasing due dates and always
when a job gets late, remove the job with largest processing time; all
removed jobs are late

• complexity: O(n log(n))

• Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

L
ectu

re
4

S
ch

ed
u
lin

g
3



Single machine models: Number of Tardy Jobs -3-

Remarks Algorithm 1||
∑

Uj

• Principle: schedule jobs in order of increasing due dates and always
when a job gets late, remove the job with largest processing time; all
removed jobs are late

• complexity: O(n log(n))

• Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

1 2 3

d3

L
ectu

re
4

S
ch

ed
u
lin

g
4



Single machine models: Number of Tardy Jobs -3-

Remarks Algorithm 1||
∑

Uj

• Principle: schedule jobs in order of increasing due dates and always
when a job gets late, remove the job with largest processing time; all
removed jobs are late

• complexity: O(n log(n))

• Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

1 3 4 5

d5

L
ectu

re
4

S
ch

ed
u
lin

g
5



Single machine models: Number of Tardy Jobs -3-

Remarks Algorithm 1||
∑

Uj

• Principle: schedule jobs in order of increasing due dates and always
when a job gets late, remove the job with largest processing time; all
removed jobs are late

• complexity: O(n log(n))

• Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

0 5 10 15 20

3 4 5

• Algorithm 1||
∑

Uj computes an optimal solution
Proof on the board

L
ectu

re
4

S
ch

ed
u
lin

g
6



Single machine models: Weighted Number of Tardy Jobs -1-

Problem 1||
∑

wjUj

• problem 1||
∑

wjUj is NP-hard even if all due dates are the same;
i.e. 1|dj = d|

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

• priority based heuristic (WSPT-rule):
schedule jobs in decreasing wj/pj order

L
ectu

re
4

S
ch

ed
u
lin

g
7



Single machine models: Weighted Number of Tardy Jobs -1-

Problem 1||
∑

wjUj

• problem 1||
∑

wjUj is NP-hard even if all due dates are the same;
i.e. 1|dj = d|

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

• priority based heuristic (WSPT-rule):
schedule jobs in decreasing wj/pj order

• WSPT may perform arbitrary bad for 1||
∑

wjUj:

L
ectu

re
4

S
ch

ed
u
lin

g
8



Single machine models: Weighted Number of Tardy Jobs -1-

Problem 1||
∑

wjUj

• problem 1||
∑

wjUj is NP-hard even if all due dates are the same;
i.e. 1|dj = d|

∑

wjUj is NP-hard
Proof on the board (reduction from PARTITION)

• priority based heuristic (WSPT-rule):
schedule jobs in decreasing wj/pj order

• WSPT may perform arbitrary bad for 1||
∑

wjUj:

n = 3; p = (1, 1,M ); w = (1+ε, 1,M−ε); d = (1+M, 1+M, 1+M )
∑

wjUj(WSPT )/
∑

wjUj(opt) = (M − ε)/(1 + ε)

L
ectu

re
4

S
ch

ed
u
lin

g
9



Single machine models: Weighted Number of Tardy Jobs -2-

Dynamic Programming for 1||
∑

wjUj

• assume d1 ≤ . . . ≤ dn

• as for 1||
∑

Uj a solution is given by a partition of the set of jobs into
sets S1 and S2 and jobs in S1 are in EDD order

• Definition:

– Fj(t) := minimum criterion value for scheduling the first j jobs
such that the processing time of the on-time jobs is at most t

• Fn(T ) with T =
∑n

j=1 pj is optimal value for problem 1||
∑

wjUj

• Initial conditions:

Fj(t) =

{

∞ for t < 0; j = 1, . . . , n

0 for t ≥ 0; j = 0
(1)

L
ectu

re
4

S
ch

ed
u
lin

g
1
0



Single machine models: Weighted Number of Tardy Jobs -3-

Dynamic Programming for 1||
∑

wjUj (cont.)

• if 0 ≤ t ≤ dj and j is late in the schedule corresponding to Fj(t), we
have Fj(t) = Fj−1(t) + wj

• if 0 ≤ t ≤ dj and j is on time in the schedule corresponding to Fj(t),
we have Fj(t) = Fj−1(t − pj)

L
ectu

re
4

S
ch

ed
u
lin

g
1
1



Single machine models: Weighted Number of Tardy Jobs -3-

Dynamic Programming for 1||
∑

wjUj (cont.)

• if 0 ≤ t ≤ dj and j is late in the schedule corresponding to Fj(t), we
have Fj(t) = Fj−1(t) + wj

• if 0 ≤ t ≤ dj and j is on time in the schedule corresponding to Fj(t),
we have Fj(t) = Fj−1(t − pj)

• summarizing, we get for j = 1, . . . , n:

Fj(t) =

{

min{Fj−1(t − pj), Fj−1(t) + wj} for 0 ≤ t ≤ dj

Fj(dj) for dj < t ≤ T
(2)

L
ectu

re
4

S
ch

ed
u
lin

g
1
2



Single machine models: Weighted Number of Tardy Jobs -4-

DP-algorithm for 1||
∑

wjUj

1. initialize Fj(t) according to (1)

2. FOR j := 1 TO n DO

3. FOR t := 0 TO T DO

4. update Fj(t) according to (2)

5.
∑

wjUj(OPT ) = Fn(dn)

L
ectu

re
4

S
ch

ed
u
lin

g
1
3



Single machine models: Weighted Number of Tardy Jobs -4-

DP-algorithm for 1||
∑

wjUj

1. initialize Fj(t) according to (1)

2. FOR j := 1 TO n DO

3. FOR t := 0 TO T DO

4. update Fj(t) according to (2)

5.
∑

wjUj(OPT ) = Fn(dn)

• complexity is O(n
∑n

j=1 pj)

• thus, algorithm is pseudopolynomial

L
ectu

re
4

S
ch

ed
u
lin

g
1
4



Single machine models: Total Tardiness -1-

Basic results:

• 1||
∑

Tj is NP-hard

• preemption does not improve the criterion value
→ 1|pmtn|

∑

Tj is NP-hard

• idle times do not improve the criterion value

• Lemma 1: If pj ≤ pk and dj ≤ dk, then an optimal schedule exist in
which job j is scheduled before job k.
Proof: exercise

• this lemma gives a dominance rule

L
ectu

re
4

S
ch

ed
u
lin

g
1
5



Single machine models: Total Tardiness -2-

Structural property for 1||
∑

Tj

• let k be a fixed job and Ĉk be latest possible completion time of job
k in an optimal schedule

• define

d̂j =

{

dj for j 6= k

max{dk, Ĉk} for j = k

• Lemma 2: Any optimal sequence w.r.t. d̂1, . . . , d̂n is also optimal
w.r.t. d1, . . . , dn.
Proof on the board

L
ectu

re
4

S
ch

ed
u
lin

g
1
6



Single machine models: Total Tardiness -3-

Structural property for 1||
∑

Tj (cont.)

• let d1 ≤ . . . ≤ dn

• let k be the job with pk = max{p1, . . . , pn}

• Lemma 1 implies that an optimal schedule exists where

{1, . . . , k − 1} → k

• Lemma 3: There exists an integer δ, 0 ≤ δ ≤ n − k for which an
optimal schedule exist in which

{1, . . . , k − 1, k + 1, . . . , k + δ} → k and k → {k + δ + 1, . . . , n}.

Proof on the board

L
ectu

re
4

S
ch

ed
u
lin

g
1
7



Single machine models: Total Tardiness -4-

DP-algorithm for 1||
∑

Tj

• Definition:

– Fj(t) := minimum criterion value for scheduling the first j jobs
starting their processing at time t

• by Lemma 3 we get:
there exists some δ ∈ {1, . . . , j} such that Fj(t) is achieved by
scheduling

1. first jobs 1, . . . , k − 1, k + 1, . . . , k + δ in some order

2. followed by job k starting at t +
∑k+δ

l=1 pl − pk

3. followed by jobs k + δ + 1, . . . , j in some order

where pk = max
j
l=1 pl

L
ectu

re
4

S
ch

ed
u
lin

g
1
8



Single machine models: Total Tardiness -5-

DP-algorithm for 1||
∑

Tj (cont.)

k {k + δ + 1, . . . , j}

{1, . . . , j}

{1, . . . , k − 1, k + 1, . . . , k + δ}

• Definition:

– J(j, l, k) := {i|i ∈ {j, j + 1, . . . , l}; pi ≤ pk; i 6= k}

L
ectu

re
4

S
ch

ed
u
lin

g
1
9



Single machine models: Total Tardiness -5-

DP-algorithm for 1||
∑

Tj (cont.)

k {k + δ + 1, . . . , j}

{1, . . . , j}

{1, . . . , k − 1, k + 1, . . . , k + δ}

• Definition:

– J(j, l, k) := {i|i ∈ {j, j + 1, . . . , l}; pi ≤ pk; i 6= k}

k

{1, . . . , j}

J(1, k + δ, k) J(k + δ + 1, j, k)

L
ectu

re
4

S
ch

ed
u
lin

g
2
0



Single machine models: Total Tardiness -5-

DP-algorithm for 1||
∑

Tj (cont.)

k

{1, . . . , j}

J(1, k + δ, k) J(k + δ + 1, j, k)

• Definition:

– J(j, l, k) := {i|i ∈ {j, j + 1, . . . , l}; pi ≤ pk; i 6= k}

– V (J(j, l, k), t) := minimum criterion value for scheduling the jobs
from J(j, l, k) starting their processing at time t

L
ectu

re
4

S
ch

ed
u
lin

g
2
1



Single machine models: Total Tardiness -6-

DP-algorithm for 1||
∑

Tj (cont.)

t

t

J(j, l, k)

J(j, k′ + δ, k′) k’ J(k′ + δ + 1, l, k′)

Ck′(δ)

• we get:
V (J(j, l, k), t) = minδ {V (J(j, k′ + δ, k′), t)

+ max{0, Ck′(δ) − dk′}
+V (J(k′ + δ + 1, l, k′), Ck′(δ)))}

where pk′ = max{p′j|j
′ ∈ J(j, l, k)} and

Ck′(δ) = t + pk′ +
∑

j′∈V (J(j,k′+δ,k′) pj′

• V (∅, t) = 0, V ({j}, t) = max{0, t + pj − dj}

L
ectu

re
4

S
ch

ed
u
lin

g
2
2



Single machine models: Total Tardiness -7-

DP-algorithm for 1||
∑

Tj (cont.)

• optimal value of 1||
∑

Tj is given by V ({1, . . . , n}, 0)

• complexity:

– at most O(n3) subsets J(j, l, k)

– at most
∑

pj values for t

– each recursion (evaluation V (J(j, l, k), t)) costs O(n) (at most n
values for δ)

total complexity: O(n4 ∑

pj) (pseudopolynomial)

L
ectu

re
4

S
ch

ed
u
lin

g
2
3


