Single machine models: Number of Tardy Jobs <u>Problem 1|| $\sum U_j$ </u>:

- Structure of an optimal schedule:
 - $\text{set } S_1 \text{ of jobs meeting their due dates}$
 - $\operatorname{set} S_2$ of jobs being late
 - -jobs of S_1 are scheduled before jobs from S_2
 - -jobs from S_1 are scheduled in EDD order
 - -jobs from S_2 are scheduled in an arbitrary order
- <u>Result</u>: a partition of the set of jobs into sets S_1 and S_2 is sufficient to describe a solution

1

Single machine models: Number of Tardy Jobs Algorithm $1 || \sum U_j$

-2-

- 1. enumerate jobs such that $d_1 \leq \ldots \leq d_n$;
- 2. $S_1 := \emptyset; t := 0;$
- 3. FOR j:=1 TO n DO

4.
$$S_1 := S_1 \cup \{j\}; t := t + p_j;$$

5. IF
$$t > d_j$$
 THEN

6. Find job k with largest p_k value in S_1 ;

7.
$$S_1 := S_1 \setminus \{k\}; t := t - p_k;$$

8. END9. END

Single machine models: Number of Tardy Jobs Remarks Algorithm $1 || \sum U_j$

• Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

-3-

- complexity: $O(n \log(n))$
- Example: n = 5; p = (7, 8, 4, 6, 6); d = (9, 17, 18, 19, 21)

Single machine models: Number of Tardy Jobs Remarks Algorithm $1 || \sum U_j$

• Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

-3-

• complexity: $O(n \log(n))$

• Example:
$$n = 5$$
; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$

Single machine models: Number of Tardy Jobs Remarks Algorithm $1 || \sum U_j$

• Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

-3-

• complexity: $O(n \log(n))$

• Example:
$$n = 5$$
; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$

Single machine models: Number of Tardy Jobs Remarks Algorithm $1 || \sum U_j$

• Principle: schedule jobs in order of increasing due dates and always when a job gets late, remove the job with largest processing time; all removed jobs are late

-3-

• complexity: $O(n \log(n))$

• Example:
$$n = 5$$
; $p = (7, 8, 4, 6, 6)$; $d = (9, 17, 18, 19, 21)$

	3		4	5			
0		5	1	0	15	20)

• Algorithm $1 || \sum U_j$ computes an optimal solution Proof on the board

- Single machine models: Weighted Number of Tardy Jobs -1-<u>Problem 1 $||\sum w_j U_j$ </u>
 - problem $1||\sum w_j U_j$ is NP-hard even if all due dates are the same; i.e. $1|d_j = d|\sum w_j U_j$ is NP-hard Proof on the board (reduction from PARTITION)
 - priority based heuristic (WSPT-rule): schedule jobs in decreasing w_j/p_j order

-1

- Single machine models: Weighted Number of Tardy Jobs -1-<u>Problem 1 $||\sum w_j U_j$ </u>
 - problem $1||\sum w_j U_j$ is NP-hard even if all due dates are the same; i.e. $1|d_j = d|\sum w_j U_j$ is NP-hard Proof on the board (reduction from PARTITION)
 - priority based heuristic (WSPT-rule): schedule jobs in decreasing w_j/p_j order
 - WSPT may perform arbitrary bad for $1 || \sum w_j U_j$:

- **Single machine models**: Weighted Number of Tardy Jobs -1-<u>Problem 1 $||\sum w_j U_j$ </u>
 - problem $1||\sum w_j U_j$ is NP-hard even if all due dates are the same; i.e. $1|d_j = d|\sum w_j U_j$ is NP-hard Proof on the board (reduction from PARTITION)
 - priority based heuristic (WSPT-rule): schedule jobs in decreasing w_j/p_j order
 - WSPT may perform arbitrary bad for $1 || \sum w_j U_j$:
 - $n = 3; p = (1, 1, M); w = (1 + \epsilon, 1, M \epsilon); d = (1 + M, 1 + M, 1 + M)$ $\sum w_j U_j (WSPT) / \sum w_j U_j (opt) = (M \epsilon) / (1 + \epsilon)$

- **Single machine models**: Weighted Number of Tardy Jobs Dynamic Programming for $1||\sum w_j U_j$
 - assume $d_1 \leq \ldots \leq d_n$
 - as for $1 || \sum U_j$ a solution is given by a partition of the set of jobs into sets S_1 and S_2 and jobs in S_1 are in EDD order
 - Definition:
 - $-F_j(t) :=$ minimum criterion value for scheduling the first j jobs such that the processing time of the on-time jobs is at most t
 - $F_n(T)$ with $T = \sum_{j=1}^n p_j$ is optimal value for problem $1 || \sum w_j U_j$
 - Initial conditions:

$$F_{j}(t) = \begin{cases} \infty & \text{for } t < 0; \ j = 1, \dots, n \\ 0 & \text{for } t \ge 0; \ j = 0 \end{cases}$$
(1)

-2-

- **Single machine models**: Weighted Number of Tardy Jobs -3-Dynamic Programming for $1||\sum w_j U_j$ (cont.)
 - if $0 \le t \le d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$
 - if $0 \le t \le d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t-p_j)$

- **Single machine models**: Weighted Number of Tardy Jobs -3-Dynamic Programming for $1||\sum w_j U_j$ (cont.)
 - if $0 \le t \le d_j$ and j is late in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t) + w_j$
 - if $0 \le t \le d_j$ and j is on time in the schedule corresponding to $F_j(t)$, we have $F_j(t) = F_{j-1}(t-p_j)$

• summarizing, we get for
$$j = 1, \ldots, n$$
:

$$F_{j}(t) = \begin{cases} \min\{F_{j-1}(t-p_{j}), F_{j-1}(t) + w_{j}\} & \text{for } 0 \le t \le d_{j} \\ F_{j}(d_{j}) & \text{for } d_{j} < t \le T \end{cases}$$
(2)

Single machine models: Weighted Number of Tardy Jobs <u>DP-algorithm for $1||\sum w_j U_j$ </u>

-4-

- 1. initialize $F_j(t)$ according to (1)
- 2. FOR j := 1 TO n DO
- 3. FOR t := 0 TO T DO
- 4. update $F_j(t)$ according to (2)
- 5. $\sum w_j U_j(OPT) = F_n(d_n)$

Single machine models: Weighted Number of Tardy Jobs DP-algorithm for $1 || \sum w_j U_j$

-4-

- 1. initialize $F_j(t)$ according to (1)
- 2. FOR j := 1 TO n DO
- 3. FOR t := 0 TO T DO
- 4. update $F_j(t)$ according to (2)
- 5. $\sum w_j U_j(OPT) = F_n(d_n)$
- complexity is $O(n \sum_{j=1}^{n} p_j)$
- \bullet thus, algorithm is pseudopolynomial

Single machine models: Total Tardiness Basic results:

- $1 || \sum T_j$ is NP-hard
- preemption does not improve the criterion value $\rightarrow 1|pmtn| \sum T_j$ is NP-hard
- idle times do not improve the criterion value
- Lemma 1: If $p_j \leq p_k$ and $d_j \leq d_k$, then an optimal schedule exist in which job j is scheduled before job k. Proof: exercise

1

• this lemma gives a dominance rule

Single machine models: Total Tardiness Structural property for $1||\sum T_j$

 \bullet let k be a fixed job and \hat{C}_k be latest possible completion time of job k in an optimal schedule

-2-

 \bullet define

$$\hat{d}_j = \begin{cases} d_j & \text{for } j \neq k \\ \max\{d_k, \hat{C}_k\} & \text{for } j = k \end{cases}$$

• Lemma 2: Any optimal sequence w.r.t. $\hat{d}_1, \ldots, \hat{d}_n$ is also optimal w.r.t. d_1, \ldots, d_n . Proof on the board

- Single machine models: Total Tardiness Structural property for $1||\sum T_j$ (cont.)
 - let $d_1 \leq \ldots \leq d_n$
 - let k be the job with $p_k = \max\{p_1, \ldots, p_n\}$
 - Lemma 1 implies that an optimal schedule exists where

$$\{1,\ldots,k-1\}\to k$$

-3-

• Lemma 3: There exists an integer δ , $0 \leq \delta \leq n - k$ for which an optimal schedule exist in which

 $\{1, \ldots, k-1, k+1, \ldots, k+\delta\} \to k \text{ and } k \to \{k+\delta+1, \ldots, n\}.$ Proof on the board

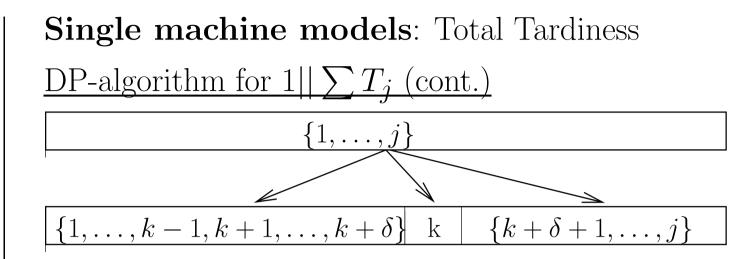
Single machine models: Total Tardiness DP-algorithm for $1||\sum T_i$

- Definition:
 - $-F_j(t) :=$ minimum criterion value for scheduling the first j jobs starting their processing at time t
- \bullet by Lemma 3 we get: there exists some $\delta \in \{1,\ldots,j\}$ such that $F_j(t)$ is achieved by scheduling
 - 1. first jobs $1, \ldots, k 1, k + 1, \ldots, k + \delta$ in some order 2. followed by job k starting at $t + \sum_{l=1}^{k+\delta} p_l - p_k$ 3. followed by jobs $k + \delta + 1, \ldots, j$ in some order where $p_k = \max_{l=1}^j p_l$

Single machine models: Total Tardiness $\begin{array}{c|c} DP\text{-algorithm for 1} & \hline & T_j \text{ (cont.)} \\ \hline & \{1, \dots, j\} \\ \hline & \{1, \dots, k-1, k+1, \dots, k+\delta\} \\ k & \{k+\delta+1, \dots, j\} \end{array}$

- Definition:
 - $-J(j,l,k) := \{i | i \in \{j, j+1, \dots, l\}; p_i \le p_k; i \ne k\}$

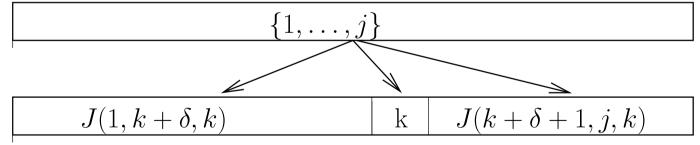
-5-



• Definition:

$$-J(j,l,k) := \{i | i \in \{j, j+1, \dots, l\}; p_i \le p_k; i \ne k\}$$

-5-



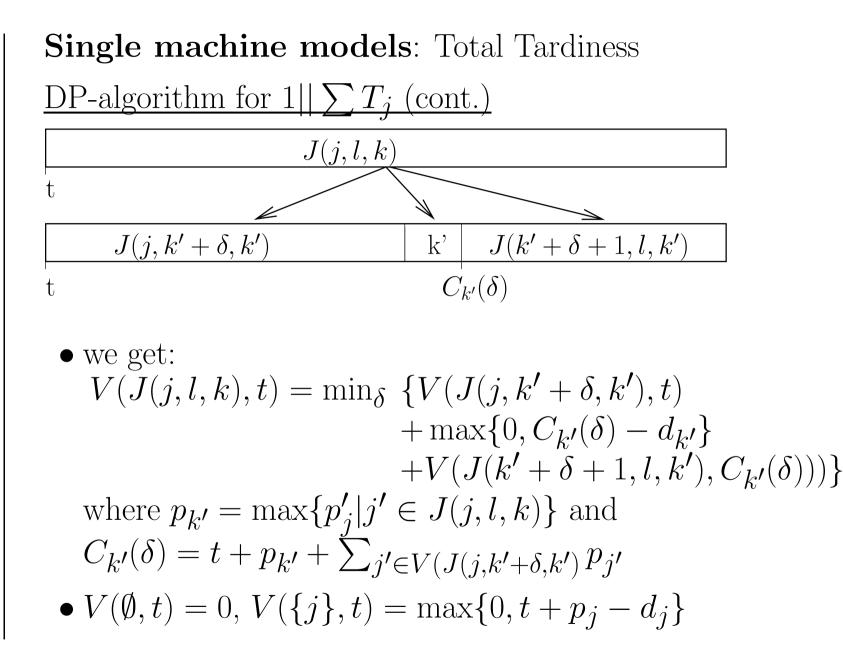
Single machine models: Total TardinessDP-algorithm for $1 || \sum T_j$ (cont.) $\{1, \dots, j\}$ $J(1, k + \delta, k)$ k $J(k + \delta + 1, j, k)$

• Definition:

$$-J(j,l,k) := \{i | i \in \{j, j+1, \dots, l\}; p_i \le p_k; i \ne k\}$$

-V(J(j, l, k), t) := minimum criterion value for scheduling the jobs from J(j, l, k) starting their processing at time t

-5-



-6-

Lecture 4

Single machine models: Total Tardiness DP-algorithm for $1||\sum T_j$ (cont.)

- optimal value of $1 || \sum T_j$ is given by $V(\{1, \ldots, n\}, 0)$
- complexity:
 - at most $O(n^3)$ subsets J(j, l, k)
 - at most $\sum p_j$ values for t
 - $\operatorname{each\ recursion\ (evaluation\ } V(J(j,l,k),t)) \ \text{costs\ } O(n) \ (\text{at\ most\ } n \ \text{values\ for\ } \delta)$

-7-

total complexity: $O(n^4 \sum p_j)$ (pseudopolynomial)