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Single machine models: Maximum Lateness
Problem 1||Lyqz:

e Farliest due date first (EDD) is optimal for 1||Laz
(Jackson’s EDD rule)

e Proof: special case of Lawler’s algorithm
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Problem 1| Ligz:

e Farliest due date first (EDD) is optimal for 1||Laz
(Jackson’s EDD rule)

e Proof: special case of Lawler’s algorithm

—define d; := K — r;, with constant K > maxr;

— reversing the optimal schedule of this 1||Lqz-problem gives an
optimal schedule for the 1|r;|Cyyqz-problem
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Problem 1|prec|Lmax:

o if d; < dj whenever j — k, any EDD schedule respects the prece-
dence constraints, i.e. in this case EDD is optimal

e defining d; := min{dj, di. — pp.} if 7 — k does not increase Ly,qq in
any feasible schedule
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Problem 1|prec|Lmax:

o if d; < dj whenever j — k, any EDD schedule respects the prece-
dence constraints, i.e. in this case EDD is optimal

e defining d; := min{dj, di. — pp.} if 7 — k does not increase Ly,qq in
any feasible schedule

Algorithm 1|prec|Lmaz

1. make due dates consistent: set d; = min{d;, I i, di. — pr.}
2. apply EDD rule with modified due dates
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Remarks on Algorithm 1|prec| Lz

e leads to an optimal solution
e Step 1 can be realized in O(n?)

e problem 1|prec|Ly,qz can be solved without knowledge of the process-
ing times, whereas Lawler’s Algorithm (which also solves this prob-
lem) in general needs this knowledge (Exercise),

e Problem 1|r;, prec|Cmaz o 1|prec| Lz




€ 9IN309

Surmpatpg

Single machine models: Maximum Lateness

Problem 1[r;|Lyqy:

e Proof: by reduction from 3-PARTITION (on the board)




€ 9IN309

Surmpatpg

Single machine models: Maximum Lateness -5-

Problem 1{pmitn, 74| Lyqy:

e preemptive EDD-rule: at each point in time, schedule an available
job (job, which release date has passed) with earliest due date.

e preemptive EDD-rule leads to at most k preemptions (kK = number
of distinct release dates)
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Problem 1{pmitn, 74| Lyqy:

e preemptive EDD-rule: at each point in time, schedule an available
job (job, which release date has passed) with earliest due date.

e preemptive EDD-rule leads to at most k preemptions (kK = number
of distinct release dates)

e preemptive EDD solves problem 1|pmitn,r;|Lyaz

e Proof (on the board) uses following results:
— Lipaz > 7(8) + p(S) — d(S) for any S C {1,...,n}, where
r(S) =minjegrj, plS) = > jegpj, d(S) = maxjegd;
— preemptive EDD leads to a schedule with
Linag = maxge(y, 5} 7(5) + p(S) — d(5)
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Remarks on preemptive EDD-rule for 1|pmtn, TjIme:

e can be implemented in O(n log(n))
e is an ‘on-line’ algorithm

e after modification of release and due-dates, preemptive EDD solves
also 1|prec, pmin, 7| Lmag
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Approximation algorithms for problem llrlemm:

e a polynomial algorithm A is called an a-approximation for problem
P if for every instance I of P algorithm A yields an objective value
fA(I) which is bounded by a factor «: of the optimal value f*(I); i.e.

fall) < af*(I)
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Single machine models: Maximum Lateness -7~

Approximation algorithms for problem llrlemm:

e a polynomial algorithm A is called an a-approximation for problem
P if for every instance I of P algorithm A yields an objective value
fA(I) which is bounded by a factor «: of the optimal value f*(I); i.e.

fall) < af*(I)
e for the objective Lj,qz, c-approximation does not make sense since

Liqr may get negative

e for the objective T},42, an a-approximation with a constant o implies
P = NP (if Tyar = 0 an a-approximation is optimal)
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The head-body-tail problem (1|r;, d; < 0[Lpygz)

® 1 jobs

e job j: release date r; (head), processing time p; (body), delivery time
q; (tail)

e starting time S; > r;;

e completion time C'; = S; + p;

e delivered at C'; + ¢,

e goal: minimize max 1 G5+ 4,
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The head-body-tail problem ( 1[7“.;,; d; < 0| Limaz), (cont.)

e define d; = —qj, 1.e. the due dates get negative!

j G5 —d; —mm] 1 Lj = Limax

o head—body—taﬂ problem equivalent with 1|r ;| Lyqz-problem with neg-
ative due dates
Notation: 1|r;,d; < 0|Lmaz

e result: mm 10+ ¢q; =min};

e an instance of the head-body-tail problem defined by n triples (r jsPjs qj)
is equivalent to an inverse instance defined by n triples (¢4, pj, 1)

e for the head-body-tail problem considering approximation algorithms
makes sense
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The head-body-tail problem ( 1[7“.;,; d; < 0| Limaz), (cont.)

® Liaz > 7(S) +p(S) + q(S) for any S C {1,...,n}, where

r(S) =minrj, p(S) =Y pj, q(5) = ming;
j€S5 ies j€S5

(follows from Lypge > 7(S) + p(S) — d(.5) - slide 5)

_10-




€ 9IN309

Surmpatpg

qI

Single machine models: Maximum Lateness -11-

Approximation ratio for EDD for problem 1|r;.d; < 0|Lpqgy

e structure of an schedule

Q

U t=r(Q) C.

e critical job ¢ of a schedule: job with L, = max L

e critical sequence : jobs processed in the interval [t, C¢|, where ¢ is
the earliest time that the machine is not idle in [¢, C|

o if g = min;¢(q; the schedule is optimal since then
Limaz(S) = Le = Ce — de = r(Q) + p(Q) + q(Q) < L;l;ma:

e Notation: L7, .. denotes the optimal value
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Single machine models: Maximum Lateness -12-

Approximation ratio for EDD for problem 1|r;.d; < 0|Lpqgy

e structure of an schedule

e interference job b: last scheduled job from @) with q; < g¢
e Lemma: For the objective value Lyqr(EDD) of an EDD schedule

we have

1. Linaz(EDD) — L* < q

e Theorem: EDD is 2-approximation algorithm for 1|r;, d; < 0|Lmaz
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Approximation ratio for EDD for problem 1|r;.d; < 0|Lpqgy

e Remarks:

— EDD is also a 2-approximation for 1|prec,r;,d; < 0|Lmaz
(uses modified release and due dates)

— by an iteration technique the approximation factor can be reduced
to 3/2
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Enumerative methods for problem 17| Lygy

e we again will use head-body-tail notation

e Simple branch and bound method:

— branch on level ¢ of the search tree by selecting a job to be scheduled
on position 7

—if in a node of the search tree on level ¢ the set of already scheduled
jobs is denoted by .S and the finishing time of the jobs from S by
t, for position ¢ we only have to consider jobs k with

ri < min(max{t,r;} + p;)
JES
— lower bound: solve for remaining jobs 1|r;, pmtn|Lmaz

— search strategy: depth first search + selecting next job via lower
bound
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Advanced b&b-methods for problem 1|r;|Lpgy

e node of search tree = restricted instance
e restrictions = set of precedence constraints

e branching = adding precedence constraints between certain pairs of
jobs

e after adding precedence constraints, modity release and due dates
e apply EDD to instance given in a node

— critical sequence has no interference job: EDD solves instance op-
timal
— backtrack

— critical sequence has an interference job: branch
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Advanced b&b-methods for problem 1|7“j|me~ (cont.)

branching, given sequence (), critical job ¢, interference job b, and set

Q' of jobs from Q following b

® Lz = Sp+pp +p(Q) +¢(Q") < r(Q") +pp +p(Q) + ¢(Q)

o if b is scheduled between jobs of )/ the value is at least
r(Q") + pp + p(Q) + q(Q); i.e. worse than the current schedule
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Advanced b&b-methods for problem 1|7“j|me~ (cont.)

branching, given sequence (), critical job ¢, interference job b, and set

Q' of jobs from Q following b

® Lz = Sp+pp +p(Q) +¢(Q") < r(Q") +pp +p(Q) + ¢(Q)

o if b is scheduled between jobs of )/ the value is at least
r(Q") + pp + p(Q) + q(Q); i.e. worse than the current schedule

e branch by adding either b — Q" or Q' — b
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Advanced b&b-methods for problem 1|7“j|Lm(,,_q~ (cont.)

e lower bounds in a node: maximum of

— lower bound of parent node

-r(Q) +p(Q) +4¢(Q)

—r(Q U{b}) +p(Q"U{b}) + ¢(Q"U {b})

using the modified release and due dates
e upper bound U B: best value of the EDD schedules
e discard a node if lower bound > U B

e scarch strategy: select node with minimum lower bound

17-
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Advanced b&b-methods for problem 1|7“j|Lm(,,_q~ (cont.)

e speed up possibility:
—let k ¢ Q" U {b} with 7(Q’) + pp + p(Q') +¢(Q") > UB
—if r(Q") + p(Q) + pp + ¢ > UB then add k — Q'
—if i, + pp. + p(Q') + ¢(Q") > UB then add Q" — k
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