- $1|r_j|C_{max}$
 - -given: n jobs with processing times p_1, \ldots, p_n and release dates r_1, \ldots, r_n

1

- jobs have to be scheduled without preemption on one machine taking into account the earliest starting times of the jobs, such that the makespan is minimized

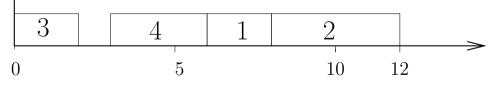
$$-n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)$$

- $1|r_j|C_{max}$
 - -given: n jobs with processing times p_1, \ldots, p_n and release dates r_1, \ldots, r_n

1

- jobs have to be scheduled without preemption on one machine taking into account the earliest starting times of the jobs, such that the makespan is minimized

$$-n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)$$



Feasible Schedule with $C_{max} = 12$ (schedule is optimal)

- $F2||\sum w_j T_j$
 - -given n jobs with weights w_1, \ldots, w_n and due dates d_1, \ldots, d_n
 - operations (i, j) with processing times p_{ij} , $i = 1, 2; j = 1, \ldots, n$

-2-

-jobs have to be scheduled on two machines such that operation (2, j) is schedules on machine 2 and does not start before operation (1, j), which is scheduled on machine 1, is finished and the total weighted tardiness is minimized

$$-n = 3, \ p = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 1 \end{pmatrix}, \ w = (3, 1, 5), \ d = (6, 8, 4)$$

- $F2||\sum w_j T_j$
 - given n jobs with weights w₁,..., w_n and due dates d₁,..., d_n
 operations (i, j) with processing times p_{ij}, i = 1, 2; j = 1,..., n
 jobs have to be scheduled on two machines such that operation (2, j) is schedules on machine 2 and does not start before operation (1, j), which is scheduled on machine 1, is finished and the total weighted tardiness is minimized

-2-

$$-n = 3, \ p = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 1 \end{pmatrix}, \ w = (3, 1, 5), \ d = (6, 8, 4)$$

$$\underbrace{M1}_{M2} \underbrace{3}_{0} \underbrace{1}_{5} \underbrace{1}_{10} \underbrace{2}_{10} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{2}_{12} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{12} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{12} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{12} \underbrace{5}_{10} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{12} \underbrace{5}_{10} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{10} \underbrace{5}_{10} \underbrace{5}_{10} \underbrace{1}_{10} \underbrace{1}_{12} \underbrace{5}_{10} \underbrace{5}_{10}$$

÷

• Nondelay Schedules:

A feasible schedule is called a nondelay schedule if no machine is kept idle while a job/an operation is waiting for processing

5

6

3

-1-

<u>Example</u>: $P3|prec|C_{max}$

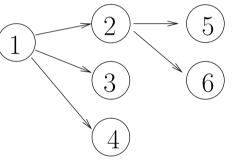
n = 6p = (1, 1, 2, 2, 3, 3)

• Nondelay Schedules:

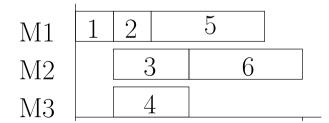
A feasible schedule is called a nondelay schedule if no machine is kept idle while a job/an operation is waiting for processing

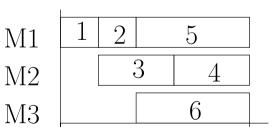
<u>Example</u>: $P3|prec|C_{max}$

n = 6
p = (1, 1, 2, 2, 3, 3)



Best nondelay:





-1-

<u>Remark</u>: restricted to non preemptive schedules

• Active Schedules:

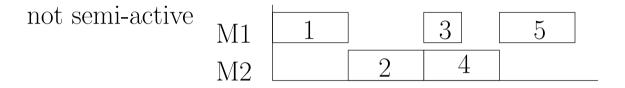
A feasible schedule is called active if it is not possible to construct another schedule by changing the order of processing on the machines and having at least one job/operation finishing earlier and no job/operation finishing later.

-2-

• Semi-Active Schedules:

A feasible schedule is called semi-active if no job/operation can be finishing earlier without changing the order of processing on any one of the machines.

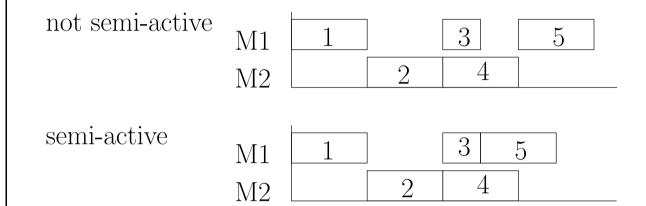
Examples of (semi)-active schedules: Prec: $1 \rightarrow 2$; $2 \rightarrow 3$



-3-

 ∞

Examples of (semi)-active schedules: Prec: $1 \rightarrow 2$; $2 \rightarrow 3$



-3-

Lecture 2

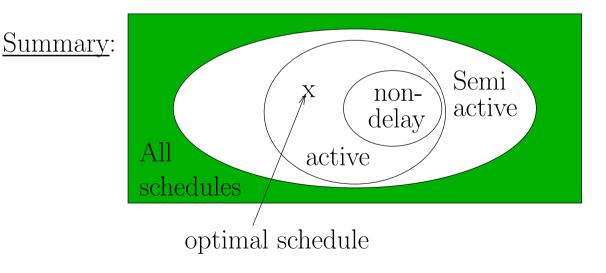
 $\mathbf{9}$

Examples of (semi)-active schedules: Prec: $1 \rightarrow 2$; $2 \rightarrow 3$ -3-



<u>Properties</u>:

- every nonpreemptive nondelay schedule is active
- every active schedule is semiactive
- if the objective criterion is regular, the set of active schedules contains an optimal schedule (regular = non decreasing with respect to the completion times)



Research topics for Scheduling

- determine boarder line between polynomially solvable and NP-hard models
- for polynomially solvable models
 - find the most efficient solution method (low complexity)
- \bullet for NP-hard models
 - develop enumerative methods (DP, branch and bound, branch and cut, ...)
 - $-\operatorname{develop}$ heuristic approached (priority based, local search, $\ldots)$
 - consider approximation methods (with quality guarantee)

• mathematical framework to study the difficulty of algorithmic problems

1

Notations/Definitions

- problem: generic description of a problem (e.g. $1 || \sum C_j$)
- instance of a problem: given set of numerical data (e.g. n, p_1, \ldots, p_n)
- \bullet size of an instance I: length of the string necessary to specify the data (Notation: |I|)
 - -binary encoding: $|I| = n + \log(p_1) + \ldots + \log(p_n)$
 - unary encoding: $|I| = n + p_1 + \ldots + p_n$

Notations/Definitions

• efficiency of an algorithm: upper bound on number of steps depending on the size of the instance (worst case consideration)

-2-

- big O-notation: for an O(f(n)) algorithm a constant c > 0 and an integer n_0 exist, such that for an instance I with size n = |I| and $n \ge n_0$ the number of steps is bounded by cf(n)Example: $7n^3 + 230n + 10\log(n)$ is $O(n^3)$
- (pseud)polynomial algorithm: O(p(|I|)) algorithm, where p is a polynomial and I is coded binary (unary) <u>Example</u>: an $O(n \log(\sum p_j))$ algorithm is a polynomial algorithm and an $O(n \sum p_j)$ algorithm is a pseudopolynomial algorithm

Classes \mathcal{P} and \mathcal{NP}

• a problem is (pseudo)polynomial solvable if a (pseudo)polynomial algorithm exists which solves the problem

-3-

- Class \mathcal{P} : contains all decision problems which are polynomial solvable
- Class \mathcal{NP} : contains all decision problems for which given an 'yes' instance the correct answer, given a proper clue, can be verified by a polynomial algorithm

<u>Remark</u>: each optimization problem has a corresponding decision problem by introducing a threshold for the objective value (does a schedule exist with objective smaller k?)

Polynomial reduction

• a decision problem P polynomially reduces to a problem Q, if a polynomial function g exists that transforms instances of P to instances of Q such that I is a 'yes' instance of P if and only is g(I) is a 'yes' instance of Qinstance of QNotation: $P \propto Q$

4

NP-complete

- a decision problem $P \in \mathcal{NP}$ is called NP-complete if all problems from the class \mathcal{NP} polynomially reduce to P
- an optimization problem is called NP-hard if the corresponding decision problem is NP-complete

- Examples of NP-complete problems:
 - SATISFIABILITY: decision problem in Boolean logic, Cook in 1967 showed that all problems from \mathcal{NP} polynomially reduce to it

-5-

- PARTITION:
 - -given n positive integers s_1, \ldots, s_n and $b = 1/2 \sum_{j=1}^n s_j$
 - does there exist a subset $J \subset I = \{1, \ldots, n\}$ such that

$$\sum_{j \in J} s_j = b = \sum_{j \in I \setminus J} s_j$$

Examples of NP-complete problems (cont.):

• 3-PARTITION:

-given 3n positive integers s_1, \ldots, s_{3n} and b with $b/4 < s_j < b/2, j = 1, \ldots, 3n$ and $b = 1/n \sum_{j=1}^{3n} s_j$

-6-

- do there exist disjoint subsets $J_i \subset I = \{1, \ldots, 3n\}$ such that

$$\sum_{j \in J_i} s_j = b; \quad i = 1, \dots, n$$

Proofing NP-completeness

If an NP-complete problem P can be polynomially reduced to a problem $Q \in \mathcal{NP}$, than this proves that Q is NP-complete (transitivity of polynomial reductions)

-7-

<u>Example</u>: $PARTITION \propto P2||C_{max}$ Proof: on the board

Famous open problem: Is $\mathcal{P} = \mathcal{NP}$?

 \bullet solving one NP-complete problem polynomially, would imply $\mathcal{P}=\mathcal{NP}$

Single machine models

<u>Observation</u>:

• for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe a solution

Dispatching (priority) rules

- static rules not time dependent e.g. shortest processing time first, earliest due date first
- dynamic rules time dependent e.g. minimum slack first (slack= $d_j - p_j - t$; t current time)
- for some problems dispatching rules lead to optimal solutions

Lecture 2

Single machine models: $1 || \sum w_j C_j$ <u>Given</u>:

• n jobs with processing times p_1, \ldots, p_n and weights w_1, \ldots, w_n

-1-

Consider case: $w_1 = \ldots = w_n (= 1)$:

Single machine models: $1 || \sum w_j C_j$ <u>Given</u>:

• n jobs with processing times p_1, \ldots, p_n and weights w_1, \ldots, w_n

1

Consider special case: $w_1 = \ldots = w_n (= 1)$:

- SPT-rule: shortest processing time first
- <u>Theorem</u>: SPT is optimal for $1||\sum C_j$ Proof: by an exchange argument (on board)
- Complexity: $O(n \log(n))$

Single machine models: $1 || \sum w_j C_j$

<u>General case</u>

- WSPT-rule: weighted shortest processing time first, i.e. sort jobs by increasing p_j/w_j -values
- <u>Theorem</u>: WSPT is optimal for $1||\sum w_j C_j$ Proof: by an exchange argument (exercise)
- Complexity: $O(n \log(n))$

<u>Further results</u>:

• $1|tree| \sum w_j C_j$ can be solved by in polynomial time $(O(n \log(n)))$ (see [Brucker 2004])

-2-

• $1|prec| \sum C_j$ is NP-hard in the strong sense (see [Brucker 2004])

Single machine models: $1|prec|f_{max}$ Given:

- n jobs with processing times p_1, \ldots, p_n
- regular functions f_1, \ldots, f_n
- objective criterion $f_{max} = \max\{f_1(C_1), \ldots, f_n(C_n)\}$

1

Observation:

• completion time of last job = $\sum p_j$

Single machine models: $1|prec|f_{max}$ Given:

- n jobs with processing times p_1, \ldots, p_n
- regular functions f_1, \ldots, f_n
- objective criterion $f_{max} = \max\{f_1(C_1), \ldots, f_n(C_n)\}$

Observation:

• completion time of last job = $\sum p_j$

Method

- plan backwards from $\sum p_j$ to 0
- from all available jobs (jobs from which all successors have already been scheduled), schedule the job which is 'cheapest' on that position

1

Single machine models: $1|prec|f_{max}$

- S set of already scheduled jobs (initial: $S = \emptyset$)
- J set of all jobs, which successors have been scheduled (initial: all jobs without successors)

-2-

t time where next job will be completed (initial: $t = \sum p_j$)

<u>Algorithm 1 $|prec|f_{max}$ (Lawler's Algorithm)</u>

REPEAT

select $j \in J$ such that $h_j(t) = \min_{k \in J} f_k(t)$; schedule j such that it completes at t; add j to S, delete j from J and update J; $t := t - p_j$; **UNTIL** $J = \emptyset$.

Single machine models: $1|prec|f_{max}$

• <u>Theorem</u>: Algorithm $1|prec|f_{max}$ is optimal for $1|prec|f_{max}$ Proof: on the board -3-

• Complexity: $O(n^2)$