
Classification - Examples -1-

• 1|rj|Cmax

– given: n jobs with processing times p1, . . . , pn and release dates
r1, . . . , rn

– jobs have to be scheduled without preemption on one machine
taking into account the earliest starting times of the jobs, such
that the makespan is minimized

– n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)

L
ectu

re
2

S
ch

ed
u
lin

g
1

Classification - Examples -1-

• 1|rj|Cmax

– given: n jobs with processing times p1, . . . , pn and release dates
r1, . . . , rn

– jobs have to be scheduled without preemption on one machine
taking into account the earliest starting times of the jobs, such
that the makespan is minimized

– n = 4, p = (2, 4, 2, 3), r = (5, 4, 0, 3)

3 4 1 2

0 5 10 12

Feasible Schedule with Cmax = 12 (schedule is optimal)

L
ectu

re
2

S
ch

ed
u
lin

g
2

Classification - Examples -2-

• F2||
∑

wjTj

– given n jobs with weights w1, . . . , wn and due dates d1, . . . , dn

– operations (i, j) with processing times pij, i = 1, 2; j = 1, . . . , n

– jobs have to be scheduled on two machines such that operation
(2, j) is schedules on machine 2 and does not start before operation
(1, j), which is scheduled on machine 1, is finished and the total
weighted tardiness is minimized

– n = 3, p =

(

2 1 3
3 4 1

)

, w = (3, 1, 5), d = (6, 8, 4)

L
ectu

re
2

S
ch

ed
u
lin

g
3

Classification - Examples -2-

• F2||
∑

wjTj

– given n jobs with weights w1, . . . , wn and due dates d1, . . . , dn

– operations (i, j) with processing times pij, i = 1, 2; j = 1, . . . , n

– jobs have to be scheduled on two machines such that operation
(2, j) is schedules on machine 2 and does not start before operation
(1, j), which is scheduled on machine 1, is finished and the total
weighted tardiness is minimized

– n = 3, p =

(

2 1 3
3 4 1

)

, w = (3, 1, 5), d = (6, 8, 4)

3

3

1

1

2

2
0 5 10 12

d3 d1 d2

M2

M1 ∑

wjTj = 3(8 − 6) + (12 − 9)
+5(4 − 4) = 9

L
ectu

re
2

S
ch

ed
u
lin

g
4

Classes of Schedules -1-

• Nondelay Schedules:
A feasible schedule is called a nondelay schedule if no machine is kept
idle while a job/an operation is waiting for processing

Example: P3|prec|Cmax

1
2

3

4

5

6

n = 6

p = (1, 1, 2, 2, 3, 3)

L
ectu

re
2

S
ch

ed
u
lin

g
5

Classes of Schedules -1-

• Nondelay Schedules:
A feasible schedule is called a nondelay schedule if no machine is kept
idle while a job/an operation is waiting for processing

Example: P3|prec|Cmax

1
2

3

4

5

6

n = 6

Best nondelay:

1 2

3

4

5

6

1 2
3 4

5

6

M1

M2

M3

M1

M2

M3

Optimal

p = (1, 1, 2, 2, 3, 3)

L
ectu

re
2

S
ch

ed
u
lin

g
6

Classes of Schedules -2-

Remark: restricted to non preemptive schedules

• Active Schedules:
A feasible schedule is called active if it is not possible to construct
another schedule by changing the order of processing on the ma-
chines and having at least one job/operation finishing earlier and no
job/operation finishing later.

• Semi-Active Schedules:
A feasible schedule is called semi-active if no job/operation can be
finishing earlier without changing the order of processing on any one
of the machines.

L
ectu

re
2

S
ch

ed
u
lin

g
7

Classes of Schedules -3-

Examples of (semi)-active schedules:

Prec: 1 → 2; 2 → 3

not semi-active
M1

M2

1

2

3
4

5

L
ectu

re
2

S
ch

ed
u
lin

g
8

Classes of Schedules -3-

Examples of (semi)-active schedules:

Prec: 1 → 2; 2 → 3

not semi-active
M1

M2

1

2

3
4

5

semi-active
M1

M2

1

2

3

4
5

L
ectu

re
2

S
ch

ed
u
lin

g
9

Classes of Schedules -3-

Examples of (semi)-active schedules:

Prec: 1 → 2; 2 → 3

not semi-active
M1

M2

1

2

3
4

5

semi-active
M1

M2

1

2

3

4
5

active
M1

M2

1

4 2

5 3

L
ectu

re
2

S
ch

ed
u
lin

g
1
0

Classes of Schedules -4-

Properties:

• every nonpreemptive nondelay schedule is active

• every active schedule is semiactive

• if the objective criterion is regular, the set of active schedules contains
an optimal schedule (regular = non decreasing with respect to the
completion times)

activeAll
schedules

Summary:

Semi
active

optimal schedule

non-x
delay

L
ectu

re
2

S
ch

ed
u
lin

g
1
1

Research topics for Scheduling

• determine boarder line between polynomially solvable and NP-hard
models

• for polynomially solvable models

– find the most efficient solution method (low complexity)

• for NP-hard models

– develop enumerative methods (DP, branch and bound, branch and
cut, ...)

– develop heuristic approached (priority based, local search, ...)

– consider approximation methods (with quality guarantee)

L
ectu

re
2

S
ch

ed
u
lin

g
1
2

Intermezzo: Complexity Theory -1-

• mathematical framework to study the difficulty of algorithmic prob-
lems

Notations/Definitions

• problem: generic description of a problem (e.g. 1||
∑

Cj)

• instance of a problem: given set of numerical data (e.g. n, p1, . . . , pn)

• size of an instance I : length of the string necessary to specify the
data (Notation: |I|)

– binary encoding: |I| = n + log(p1) + . . . + log(pn)

– unary encoding: |I| = n + p1 + . . . + pn

L
ectu

re
2

S
ch

ed
u
lin

g
1
3

Intermezzo: Complexity Theory -2-

Notations/Definitions

• efficiency of an algorithm: upper bound on number of steps depending
on the size of the instance (worst case consideration)

• big O-notation: for an O(f (n)) algorithm a constant c > 0 and an
integer n0 exist, such that for an instance I with size n = |I| and
n ≥ n0 the number of steps is bounded by cf (n)
Example: 7n3 + 230n + 10 log(n) is O(n3)

• (pseud)polynomial algorithm: O(p(|I|)) algorithm, where p is a poly-
nomial and I is coded binary (unary)
Example: an O(n log(

∑

pj)) algorithm is a polynomial algorithm
and an O(n

∑

pj) algorithm is a pseudopolynomial algorithm

L
ectu

re
2

S
ch

ed
u
lin

g
1
4

Intermezzo: Complexity Theory -3-

Classes P and NP

• a problem is (pseudo)polynomial solvable if a (pseudo)polynomial
algorithm exists which solves the problem

• Class P : contains all decision problems which are polynomial solvable

• Class NP : contains all decision problems for which - given an ’yes’
instance - the correct answer, given a proper clue, can be verified by
a polynomial algorithm

Remark: each optimization problem has a corresponding decision prob-
lem by introducing a threshold for the objective value (does a schedule
exist with objective smaller k?)

L
ectu

re
2

S
ch

ed
u
lin

g
1
5

Intermezzo: Complexity Theory -4-

Polynomial reduction

• a decision problem P polynomially reduces to a problem Q, if a poly-
nomial function g exists that transforms instances of P to instances
of Q such that I is a ’yes’ instance of P if and only is g(I) is a ’yes’
instance of Q
Notation: P ∝ Q

NP-complete

• a decision problem P ∈ NP is called NP-complete if all problems
from the class NP polynomially reduce to P

• an optimization problem is called NP-hard if the corresponding deci-
sion problem is NP-complete

L
ectu

re
2

S
ch

ed
u
lin

g
1
6

Intermezzo: Complexity Theory -5-

Examples of NP-complete problems:

• SATISFIABILITY: decision problem in Boolean logic, Cook in 1967
showed that all problems from NP polynomially reduce to it

• PARTITION:

– given n positive integers s1, . . . , sn and b = 1/2
∑n

j=1 sj

– does there exist a subset J ⊂ I = {1, . . . , n} such that
∑

j∈J

sj = b =
∑

j∈I\J

sj

L
ectu

re
2

S
ch

ed
u
lin

g
1
7

Intermezzo: Complexity Theory -6-

Examples of NP-complete problems (cont.):

• 3-PARTITION:

– given 3n positive integers s1, . . . , s3n and b with b/4 < sj <

b/2, j = 1, . . . , 3n and b = 1/n
∑3n

j=1 sj

– do there exist disjoint subsets Ji ⊂ I = {1, . . . , 3n} such that
∑

j∈Ji

sj = b; i = 1, . . . , n

L
ectu

re
2

S
ch

ed
u
lin

g
1
8

Intermezzo: Complexity Theory -7-

Proofing NP-completeness

If an NP-complete problem P can be polynomially reduced to a prob-
lem Q ∈ NP , than this proves that Q is NP-complete (transitivity of
polynomial reductions)

Example: PARTITION ∝ P2||Cmax

Proof: on the board

Famous open problem: Is P = NP?

• solving one NP-complete problem polynomially, would imply P =
NP

L
ectu

re
2

S
ch

ed
u
lin

g
1
9

Single machine models

Observation:

• for non-preemptive problems and regular objectives, a sequence in
which the jobs are processed is sufficient to describe a solution

Dispatching (priority) rules

• static rules - not time dependent
e.g. shortest processing time first, earliest due date first

• dynamic rules - time dependent
e.g. minimum slack first (slack= dj − pj − t; t current time)

• for some problems dispatching rules lead to optimal solutions

L
ectu

re
2

S
ch

ed
u
lin

g
2
0

Single machine models: 1||
∑

wjCj -1-

Given:

• n jobs with processing times p1, . . . , pn and weights w1, . . . , wn

Consider case: w1 = . . . = wn(= 1):

L
ectu

re
2

S
ch

ed
u
lin

g
2
1

Single machine models: 1||
∑

wjCj -1-

Given:

• n jobs with processing times p1, . . . , pn and weights w1, . . . , wn

Consider special case: w1 = . . . = wn(= 1):

• SPT-rule: shortest processing time first

• Theorem: SPT is optimal for 1||
∑

Cj
Proof: by an exchange argument (on board)

• Complexity: O(n log(n))

L
ectu

re
2

S
ch

ed
u
lin

g
2
2

Single machine models: 1||
∑

wjCj -2-

General case

• WSPT-rule: weighted shortest processing time first, i.e.
sort jobs by increasing pj/wj-values

• Theorem: WSPT is optimal for 1||
∑

wjCj
Proof: by an exchange argument (exercise)

• Complexity: O(n log(n))

Further results:

• 1|tree|
∑

wjCj can be solved by in polynomial time (O(n log(n)))
(see [Brucker 2004])

• 1|prec|
∑

Cj is NP-hard in the strong sense
(see [Brucker 2004])

L
ectu

re
2

S
ch

ed
u
lin

g
2
3

Single machine models: 1|prec|fmax -1-

Given:

• n jobs with processing times p1, . . . , pn

• regular functions f1, . . . , fn

• objective criterion fmax = max{f1(C1), . . . , fn(Cn)}

Observation:

• completion time of last job =
∑

pj

L
ectu

re
2

S
ch

ed
u
lin

g
2
4

Single machine models: 1|prec|fmax -1-

Given:

• n jobs with processing times p1, . . . , pn

• regular functions f1, . . . , fn

• objective criterion fmax = max{f1(C1), . . . , fn(Cn)}

Observation:

• completion time of last job =
∑

pj

Method

• plan backwards from
∑

pj to 0

• from all available jobs (jobs from which all successors have already
been scheduled), schedule the job which is ’cheapest’ on that position

L
ectu

re
2

S
ch

ed
u
lin

g
2
5

Single machine models: 1|prec|fmax -2-

S set of already scheduled jobs (initial: S = ∅)
J set of all jobs, which successors have been scheduled (ini-

tial: all jobs without successors)
t time where next job will be completed (initial: t =

∑

pj)

Algorithm 1|prec|fmax (Lawler’s Algorithm)

REPEAT

select j ∈ J such that hj(t) = mink∈J fk(t);
schedule j such that it completes at t;
add j to S, delete j from J and update J ;
t := t − pj;

UNTIL J = ∅.

L
ectu

re
2

S
ch

ed
u
lin

g
2
6

Single machine models: 1|prec|fmax -3-

• Theorem: Algorithm 1|prec|fmax is optimal for 1|prec|fmax

Proof: on the board

• Complexity: O(n2)

L
ectu

re
2

S
ch

ed
u
lin

g
2
7

