g 9In3oor]

Surmpatpg

Classification - Examples -1-

¢ 1|7i|Cmax
—given: n jobs with processing times p1q,...,pn and release dates
1,...,"n
—jobs have to be scheduled without preemption on one machine

taking into account the earliest starting times of the jobs, such
that the makespan is minimized

—n=4,p=(2,4,2,3), r=(54,0,3)

g 9In3oor]

Surmpatpg

Classification - Examples -1-

¢ 1|7|Cax
—given: n jobs with processing times p1,...,pn and release dates
1,...,Tn
— jobs have to be scheduled without preemption on one machine

taking into account the earliest starting times of the jobs, such
that the makespan is minimized

—n=4p=(2,4,2,3),r=(54,0,3)

3 4 1 2
0 5 10 12

Feasible Schedule with Cy,qz = 12 (schedule is optimal)

g 9In3oor]

Surmpatpg

Classification - Examples -2-

® F2|| Z w]T]
— given n jobs with weights wq, ..., w;, and due dates dy, ..., dp
— operations (4, j) with processing times p;;, ¢ =1,2; 7 =1,...,n

— jobs have to be scheduled on two machines such that operation
(2, 7) is schedules on machine 2 and does not start before operation

(1, 7), which is scheduled on machine 1, is finished and the total
weighted tardiness is minimized

—n=3,p= (?) 111 ?), w = (3,1,5), d=(6,8,4)

g 9In3oor]

Surmpatpg

Classification - Examples -2-

® F2|| Z w]T]
— given n jobs with weights wq, ..., w;, and due dates dy,...,dp
— operations (4, j) with processing times p;;, ¢t =1,2; 7=1,...,n

— jobs have to be scheduled on two machines such that operation
(2, 7) is schedules on machine 2 and does not start before operation

(1, 7), which is scheduled on machine 1, is finished and the total
weighted tardiness is minimized

=3 p= (g ; f) w=(3,1,5), d=(6,8,4)

M1 3 1 |2

YowT; =3(8—6)4+(12—-9)
M2 3 1 K - +5(4 —4) =9
0 5 10 12
dS dl d2

g 9In3oor]

Surmpatpg

Classes of Schedules

e Nondelay Schedules:

1-

A feasible schedule is called a nondelay schedule if no machine is kept
idle while a job/an operation is waiting for processing

Example: P3|prec|Cmaz

n==~6
p=(1,1,2,23,3)

@i@\@

—®
(9

g 9IN900]

Surmpatpg

Classes of Schedules

e Nondelay Schedules:

1-

A feasible schedule is called a nondelay schedule if no machine is kept

idle while a job/an operation is waiting for processing

Example: P3|prec|Caz

n=~6
p=1(1,1,2,2,3,3)

Best nondelay:

M1 |12 5
M2 3 6
M3 1

@i@\@

—®
(9

Optimal

M1 |1

M2

M3

g 9In3oor]

Surmpatpg

Classes of Schedules _2-

Remark: restricted to non preemptive schedules

e Active Schedules:
A feasible schedule is called active if it is not possible to construct
another schedule by changing the order of processing on the ma-
chines and having at least one job/operation finishing earlier and no
job/operation finishing later.

e Semi-Active Schedules:
A feasible schedule is called semi-active if no job/operation can be
finishing earlier without changing the order of processing on any one
of the machines.

g 9IN900]

Surmpatpg

Classes of Schedules

Examples of (semi)-active schedules:

Prec: 1 — 2; 2 — 3

not semi-active

M1 1 3

M2 2 4

g 9IN900]

Surmpatpg

Classes of Schedules

Examples of (semi)-active schedules:

Prec: 1 — 2; 2 — 3

not semi-active

M1 1 3
M2 2 4
semi-active M 1 3 5

M2 2 4

g 9IN900]

Surmpatpg

01

Classes of Schedules

Examples of (semi)-active schedules:

Prec: 1 — 2; 2 — 3

not semi-active

M1 1 3

M2 2 4
semi-active M 1 3 5

M2 2 4

active

M1 1 5 |3
M2 [4 2

G °2INjooT

Surmpatpg

1T

Classes of Schedules -4-

Properties:

e cvery nonpreemptive nondelay schedule is active
e cvery active schedule is semiactive

e if the objective criterion is regular, the set of active schedules contains
an optimal schedule (regular = non decreasing with respect to the
completion times)

Summary:

1NOI1-

delay

active

optimal schedule

g 9In3oor]

Surmpatpg

¢l

Research topics for Scheduling

e determine boarder line between polynomially solvable and NP-hard
models

e for polynomially solvable models
— find the most efficient solution method (low complexity)

e for NP-hard models

— develop enumerative methods (DP, branch and bound, branch and
cut, ...)
— develop heuristic approached (priority based, local search, ...)

— consider approximation methods (with quality guarantee)

g 9In3oor]

Surmpatpg

€l

Intermezzo: Complexity Theory -1-

e mathematical framework to study the difficulty of algorithmic prob-
lems

Notations/Definitions

e problem: generic description of a problem (e.g. 1{| > C})
e instance of a problem: given set of numerical data (e.g. n, p1,...,pn)

e size of an instance I: length of the string necessary to specify the
data (Notation: |I])

— binary encoding: |I| = n + log(py) + ... + log(pn)
—unary encoding: |I|=n-+p1+...+pn

g 9In3oor]

Surmpatpg

4!

Intermezzo: Complexity Theory -2-

Notations/Definitions

e efficiency of an algorithm: upper bound on number of steps depending
on the size of the instance (worst case consideration)

e big O-notation: for an O(f(n)) algorithm a constant ¢ > 0 and an
integer ng exist, such that for an instance I with size n = |I| and
n > ng the number of steps is bounded by c¢f(n)

Example: 7n? 4 230n + 10log(n) is O(n?)

e (pseud)polynomial algorithm: O(p(|I])) algorithm, where p is a poly-
nomial and [is coded binary (unary)
Example: an O(nlog()_p;)) algorithm is a polynomial algorithm
and an O(n) p;) algorithm is a pseudopolynomial algorithm

g 9In3oor]

Surmpatpg

qI

Intermezzo: Complexity Theory -3-

Classes P and NP

e a problem is (pseudo)polynomial solvable if a (pseudo)polynomial
algorithm exists which solves the problem

e Class ‘P: contains all decision problems which are polynomial solvable

e Class N'P: contains all decision problems for which - given an 'yes’
instance - the correct answer, given a proper clue, can be verified by
a polynomial algorithm

Remark: each optimization problem has a corresponding decision prob-

lem by introducing a threshold for the objective value (does a schedule
exist with objective smaller £7)

g 9In3oor]

Surmpatpg

91

Intermezzo: Complexity Theory -4-

Polynomial reduction

e a decision problem P polynomially reduces to a problem @), if a poly-
nomial function g exists that transforms instances of P to instances
of @ such that I is a 'yes’ instance of P if and only is g([) is a "yes’
instance of ()

Notation: P oc ()

NP-complete

e a decision problem P € NP is called NP-complete if all problems
from the class NP polynomially reduce to P

e an optimization problem is called NP-hard if the corresponding deci-
sion problem is NP-complete

g 9In3oor]

Surmpatpg

L1

Intermezzo: Complexity Theory -5-

Examples of NP-complete problems:

o SATISFIABILITY: decision problem in Boolean logic, Cook in 1967
showed that all problems from NP polynomially reduce to it

e PARTITION:
— given n positive integers s, ..., sy and b =1/2 Z;‘:l S
— does there exist a subset J C I = {1,...,n} such that

Zsj:b: Z S

JjeJ jel\J

g 9In3oor]

Surmpatpg

]!

Intermezzo: Complexity Theory -0-

Examples of NP-complete problems (cont.):

e 3-PARTITION:
—given 3n positive integers sq,...,83, and b with 0/4 < s; <
b/2, j=1,...,3n and b = 1/”25215]'
— do there exist disjoint subsets J; C I = {1,...,3n} such that

ZSj:b; i:1,...,n

J€J;

g 9In3oor]

Surmpatpg

61

Intermezzo: Complexity Theory - (-

Proofing NP-completeness

If an NP-complete problem P can be polynomially reduced to a prob-
lem @Q € NP, than this proves that) is NP-complete (transitivity of
polynomial reductions)

Example: PARTITION o P2||Ciaz

Proof: on the board

Famous open problem: Is P = NP?

e solving one NP-complete problem polynomially, would imply P =

NP

g 9In3oor]

Surmpatpg

0c

Single machine models

Observation:

e for non-preemptive problems and regular objectives, a sequence in
which the jobs are processed is sufficient to describe a solution

Dispatching (priority) rules

e static rules - not time dependent
e.g. shortest processing time first, earliest due date first

e dynamic rules - time dependent
e.g. minimum slack first (slack= d; — p; —¢; ¢ current time)

e for some problems dispatching rules lead to optimal solutions

g 9In3oor]

Surmpatpg

1¢

Single machine models: 1{| > w,;C; -1-

Given:

e 1 jobs with processing times p1, ..., pp and weights wq, ..., wy

Consider case: w1 = ... =wp(=1):

g 9In3oor]

Surmpatpg

(e

Single machine models: 1{| > w,;C; -1-

Given:
e 1 jobs with processing times p1, ..., pp and weights wq, ..., wy
Consider special case: w) = ... = wp(=1):

e SPT-rule: shortest processing time first

e Theorem: SPT is optimal for 1| } C;
Proof: by an exchange argument (on board)

e Complexity: O(nlog(n))

g 9In3oor]

Surmpatpg

€¢

Single machine models: 1{| > w,;C; -2-

(General case

o WSPT-rule: weighted shortest processing time first, i.e.
sort jobs by increasing p / w j-values

e Theorem: WSPT is optimal for 1|| > w,;C;
Proof: by an exchange argument (exercise)

e Complexity: O(nlog(n))

Further results:

o l|tree| > w;C; can be solved by in polynomial time (O(nlog(n)))
(see [Brucker 2004])

o l|prec|) Cj is NP-hard in the strong sense
(see [Brucker 2004])

¢ 91309

surmpayoyg

(4

Single machine models: 1|prec|fmaz

Given:
e 1 jobs with processing times p1, ..., pn
e regular functions f1,..., fn

e objective criterion fyqr = max{ f1(C1),...

Observation:

e completion time of last job = > p;

 fn(Cn)}

g 9In3oor]

Surmpatpg

514

Single machine models: 1|prec|fmaz -1-

Given:
e 1 jobs with processing times p1, ..., pn
e regular functions f1,..., fn

e objective criterion frqr = max{fi(C1),..., fn(Cn)}

Observation:

e completion time of last job = > p;

Method

e plan backwards from) p; to 0

e from all available jobs (jobs from which all successors have already
been scheduled), schedule the job which is ’cheapest’ on that position

g 9In3oor]

Surmpatpg

9¢

Single machine models: 1|prec|fmaz

S set of already scheduled jobs (initial: S = ()

J set of all jobs, which successors have been scheduled (ini-
tial: all jobs without successors)

t time where next job will be completed (initial: t =) p;)

Algorithm 1|prec| fmar (Lawler’s Algorithm)

REPEAT
select j € J such that h;(t) = minge j fi(%);
schedule 7 such that it completes at ¢;
add 5 to S, delete 7 from J and update J:;

ti=1t—pj
UNTIL J = (.

g 9In3oor]

Surmpatpg

LC

Single machine models: 1|prec|fmaz

e Theorem: Algorithm 1|prec|fimaz is optimal for 1|prec| fmaz
Proot: on the board

e Complexity: O(n?)

