
On-Line Scheduling -1-

General Introduction

• on-line scheduling can be seen as scheduling with incomplete infor-
mation

• at certain points, decisions have to be made without knowing already
the complete instance

• depending on the way how new information gets known, different
on-line paradigms are possible

L
ectu

re
1
1

S
ch

ed
u
lin

g
1

On-Line Scheduling -2-

On-Line paradigms

• scheduling jobs one by one

– in this paradigm jobs are ordered in some list (sequence)

– jobs are presented one by one to the decision maker

– at the moment the job is presented, its characteristics get available

– the scheduling decision for the job has to be taken before the next
job is presented

– the scheduling decision is irreversible

Remarks:

• scheduling jobs one by one is list scheduling!

• in Lecture 5, we have shown that list scheduling is a 2 − 1/m-
approximation for P ||Cmax

L
ectu

re
1
1

S
ch

ed
u
lin

g
2

On-Line Scheduling -3-

On-Line paradigms (cont.)

• jobs arrive over time

– jobs get know at their release date

– the scheduling decision for a job may be delayed

– at any time all currently available jobs are at the disposal of the
decision maker

– decisions in the past are irreversible

Remark:

• we consider this paradigm

L
ectu

re
1
1

S
ch

ed
u
lin

g
3

On-Line Scheduling -4-

Performance measure

• quality of an on-line algorithm is mostly measured by evaluating its
worst case performance

• as reference value the best off-line value is used

• has a ’game theoretic’ character:

– the on-line algorithm plays against an ’adversary’

– the adversary makes a sequence of requests (jobs) to be served by
the on-line algorithm

– the adversary also serves the request, but only after it knows all
request

– the adversary tries to get the costs of the on-line algorithm as high
as possible compared to its own cost

L
ectu

re
1
1

S
ch

ed
u
lin

g
4

On-Line Scheduling -5-

Performance measure - competitive analysis

• an on-line algorithm is ρ-competitive if its objective value is no more
than ρ times the optimal off-line value for all instances

• the competitive ratio is related to the approximation factor in off-line
settings

L
ectu

re
1
1

S
ch

ed
u
lin

g
5

On-Line Scheduling -5-

Performance measure - competitive analysis

• an on-line algorithm is ρ-competitive if its objective value is no more
than ρ times the optimal off-line value for all instances

• the competitive ratio is related to the approximation factor in off-line
settings

• if randomization is allowed within the on-line algorithm (i.e. ran-
dom choices are allowed) the expected objective value is used for the
competitive analysis

L
ectu

re
1
1

S
ch

ed
u
lin

g
6

On-Line Scheduling -6-

Performance measure - lower bounds

• how much does one lose by not having complete information or how
much is it worth to know the future?

L
ectu

re
1
1

S
ch

ed
u
lin

g
7

On-Line Scheduling -6-

Performance measure - lower bounds

• how much does one lose by not having complete information or how
much is it worth to know the future?

• the competitive ratio of a specific on-line algorithm is not the answer
to this problem

• a lower bound on the competitive ratio of every possible on-line algo-
rithm answers the question!

• such lower bounds can be achieved by providing a specific set of in-
stances on which no on-line algorithm can perform well

L
ectu

re
1
1

S
ch

ed
u
lin

g
8

On-Line Scheduling -7-

Problem 1|rj|
∑
Cj

• problem is NP-hard

• if all release dates are equal, the SPT-rule solves the problem

• in the general case, SPT (each time the machine gets idle, process an
available job with smallest processing time) is an on-line algorithm

• Theorem: For problem 1|rj|
∑
Cj the SPT-algorithm has not a con-

stant competitive ratio.
(Proof as exercise)

• Can we do better?

• How good can we do?

L
ectu

re
1
1

S
ch

ed
u
lin

g
9

On-Line Scheduling -8-

Problem 1|rj|
∑
Cj - lower bound

• Theorem: Any deterministic on-line algorithm for problem 1|rj|
∑
Cj

has a competitive ratio of at least 2
(proof on the board)

• Remark: Proof of the theorem shows that any on-line algorithm which
has a constant competitive ratio needs a ’waiting’ strategy

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
0

On-Line Scheduling -9-

Problem 1|rj|
∑
Cj - algorithm

• Algorithm delayed SPT (DSPT):

1. IF machine gets idle THEN

2. calculate next time t at which a job is available;

3. let j be unscheduled available job with smallest processing time;

4. (if choice, select job with smallest release date);

5. IF pj ≤ t THEN

6. schedule job j at t

7. ELSE

8. wait until t = pj or until a next job becomes available;

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
1

On-Line Scheduling -10-

Problem 1|rj|
∑
Cj - algorithm (cont.)

• Remarks on DSPT:

– algorithm would like to order jobs by increasing processing times,
but does not know if in the future smaller jobs arrive and how long
to wait

– to cope with this, the algorithm waits so long that if it makes a
’mistake’ and schedules a large job j, all smaller jobs coming after
j have a release date ≥ pj

– this makes that the ’mistake’ can not contribute too much to the
criterion

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
2

On-Line Scheduling -11-

Problem 1|rj|
∑
Cj - algorithm (cont.)

• Theorem: Algorithm DSPT for problem 1|rj|
∑
Cj has competitive

ratio 2

• Proof (sketch):

– Notation:

∗ I : instance with a minimal number of jobs for which DSPT has
largest performance ratio

∗ σ: schedule created by algorithm DSPT for instance I

– Observation: Schedule σ consist of a single block (i.e. all jobs are
processed without idle time in between)

– Assumption: jobs are numbered according to their position in σ

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
3

On-Line Scheduling -12-

Problem 1|rj|
∑
Cj - algorithm (cont.)

• Proof (cont.):

– partition of σ into subblocks B1, . . . , Bk:

∗ within Bi jobs are ordered according to increasing processing
times

∗ last job of Bi is larger than first job of Bi+1

∗ Bi consist of jobs b(i− 1) + 1, . . . , b(i)
(i.e. b(i) = min{j > b(i− 1)|pj > pj+1})

– define m(i) such that pm(i) = max0≤j≤b(i) pj
– define pseudo schedule ψ by scheduling jobs in same order as in σ

where job j from subblock Bi+1 starts at Sj(σ) − pm(i)

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
4

On-Line Scheduling -13-

Problem 1|rj|
∑
Cj - algorithm (cont.)

• Proof (cont.):

– in ψ job may overlap or start before their release date

– Notation:

∗ φ: optimal preemptive schedule for I

– Lemma 1: For all j ∈ I we have: Cj(σ) − Cj(ψ) ≤ Cj(φ).
(Proof on the board)

– Lemma 2:
∑
Cj(ψ) ≤

∑
Cj(φ)

(Proof in the handouts)

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
5

On-Line Scheduling -14-

Problem 1|rj|
∑
Cj - randomized algorithm

• algorithm is based on optimal preemptive solution of problem
1|rj, pmtn|

∑
Cj

• SRPT (at each point in time schedule an available job with shortest
remaining processing time) solves problem 1|rj, pmtn|

∑
Cj

• SRPT is an on-line algorithm and, thus, an on-line algorithm for
problem 1|rj|

∑
Cj may use the result of SRPT

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
6

On-Line Scheduling -15-

Problem 1|rj|
∑
Cj - randomized algorithm

• algorithm α-scheduler:

1. L: list of jobs for which in the optimal preemptive schedule an α
fraction has already been scheduled at the current time;
initially: L = ∅;

2. proceed in time whereby the preemptive schedule is updated

3. IF α fraction of job j is finished in preemptive schedule THEN

4. add j at the end of L;

5. IF machine gets idle THEN

6. schedule first job of L or if L is empty, proceed in time;

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
7

On-Line Scheduling -16-

Problem 1|rj|
∑
Cj - randomized algorithm

• for fixed α the α-scheduler is a deterministic algorithm

• for α = 1, the α-scheduler has a competitive ratio of 2
(proof by Phillips,Stein and Wein [1995])

• other values of α lead to larger competitive ratios

• Theorem: The randomized on-line algorithm α-scheduler, where α is
chosen according to probability density function f (α) = eα/(e− 1),
has competitive ratio e/(e− 1) ≈ 1.582
(proof by Chekuri, Motwani, Natarajan and Stein [1997])

• Theorem: Any randomized on-line algorithm for problem 1|rj|
∑
Cj

has a competitive ratio of at least e/(e− 1)
(proof in the handouts)

L
ectu

re
1
1

S
ch

ed
u
lin

g
1
8

