Scheduling (LNMB Master Course)

Lecturer Johann Hurink, University of Twente Tel.: 053 489 3447 e-mail: j.l.hurink@utwente.nl

Secretary Dini Heres-Ticheler Tel.: 053 489 3402

Time Monday 13.00-14.45 January 24 - March 21 and April 4 - April 18

Location De Uithof Utrecht, Princetonplein 5, Buys Ballot Laboratorium, Room 106 Scheduling

Information on the web:

 $\rm http://www.math.utwente.nl/\simhurinkjl/sched/$

- references
- \bullet pdf- and ps-files of the slides of the lectures
- subjects of the course
- news
- . . .

Goals

main goals of the course 'Scheduling':

- 1. get knowledge on basic models in scheduling
- 2. get knowledge on basic solution techniques for scheduling models
- 3. learn about applications of scheduling models

Material

• Pinedo, Michael L:

Planning and Scheduling in Manufacturing and Services;Springer Series in Operations Research and Financial Engineering,2005, With CD-ROM., Hardcover, ISBN: 0-387-22198-0

- Brucker, Peter: Scheduling Algorithms 4th ed., 2004, Springer Verlag Berlin, Hardcover, ISBN: 3-540-20524-1
- Pinedo, Michael L: Scheduling: Theory, Algorithms, and Systems; 2nd ed., 2002, Prentice Hall, ISBN 0-13-028138-7
- handout

Planning of the subjects (temp.)

Lecture	Date	Subject
Lecture 1	24.01.2005	Introduction
Lecture 2	31.01.2005	Single machine models
Lecture 3	07.02.2005	Single machine models
Lecture 4	14.02.2005	Parallel machine models
Lecture 5	21.02.2005	Shop scheduling models
Lecture 6	28.02.2005	Shop scheduling models
Lecture 7	07.03.2005	Shop scheduling models
Lecture 8	14.03.2005	Shop scheduling models
Lecture 9	21.03.2005	Interval scheduling
Lecture 10	04.04.2005	Models in Transportation
Lecture 11	11.04.2005	Models in Transportation
Lecture 12	18.04.2005	open

Lecture 1

ы

Structure

- Lectures
 - models
 - methods and algorithms
 - examples
 - applications
- Examination: take home problems
 - $-\operatorname{will}$ be given on the web-page
 - are updated frequently
 - two series; first to be delivered by 11.03.2005; second by 29.04.2005
 Johann Hurink, University of Twente,
 P.O. Box 217, 7500 AE Enschede

What is Scheduling?

- decision making in manufacturing and service industries
- allocation of scare resources to tasks over time

Two main areas of application

- manufacturing models
- service models

<u>Remark</u>: we only consider deterministic models

Examples: Paper Bag Factory

• factory producing paper bags for different goods

_ 1 _

- raw material: rolls of paper
- 3-stage production process
 - printing the logo
 - $-\operatorname{gluing}$ the sides of the bag
 - sewing one or both ends of the bag
- at each stage several machines for processing
- set of production orders specified by
 - quantity and type of bag
 - $-\operatorname{committed}$ delivery date

Examples: Paper Bag Factory

- processing times proportional to the quantities
- late delivery leeds to a penalty, magnitude depends on
 - $-\operatorname{importance}$ of the client
 - tardiness of the delivery
- switching on a machine from production of one bag-type to another, leads to setup time

- 2 -

- objectives:
 - minimize total penalty costs
 - minimize total time spent on setups

Examples: Routing and Scheduling of Airplanes

- airline has a fleet of different aircrafts
- given a set of flights characterized by
 - origin and destination
 - $-\operatorname{scheduled}$ departure and arrival time
 - customers demand (predicted by the marketing department)
- assigning a particular type of aircraft to a specific flight leg leads to an estimated profit (based on demand)

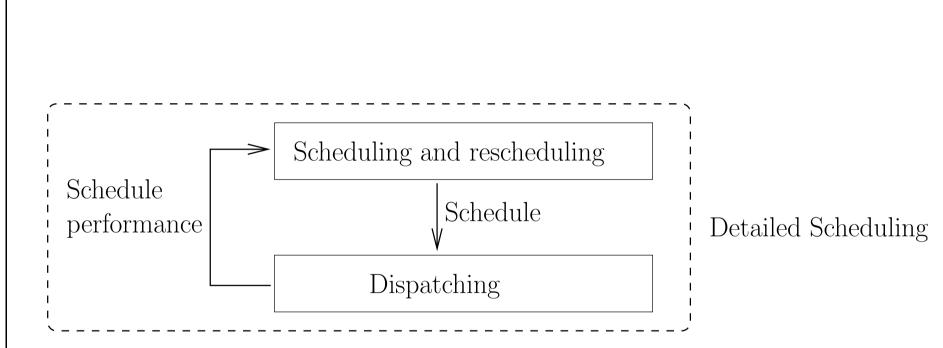
_ 1 _

Examples: Routing and Scheduling of Airplanes - 2 -

- problem: combine different flight legs to round-trips and assign an aircraft to them
- constraints:
 - $-\operatorname{turn}$ around time at an airport
 - $-\operatorname{law}$ regulation on duration of a crew duty
 - · · ·
- goal: maximize profit

Scheduling Function in an Enterprise

- the scheduling function interacts with many other functions
- interactions are system-dependent
- often take place in an enterprise-wide information system; enterprise resource planning (ERP) system
- often scheduling is done interactively with a decision support system linked to the ERP system

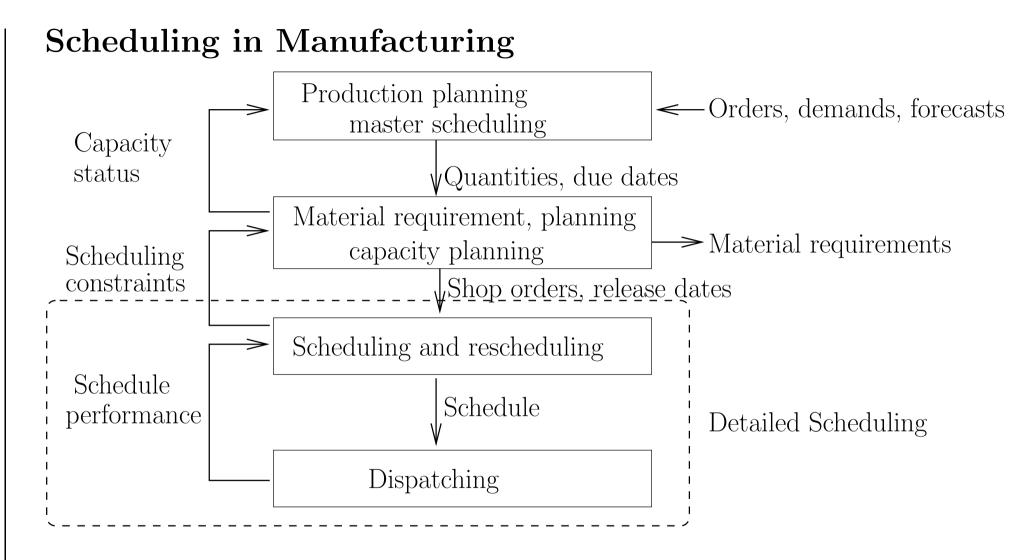


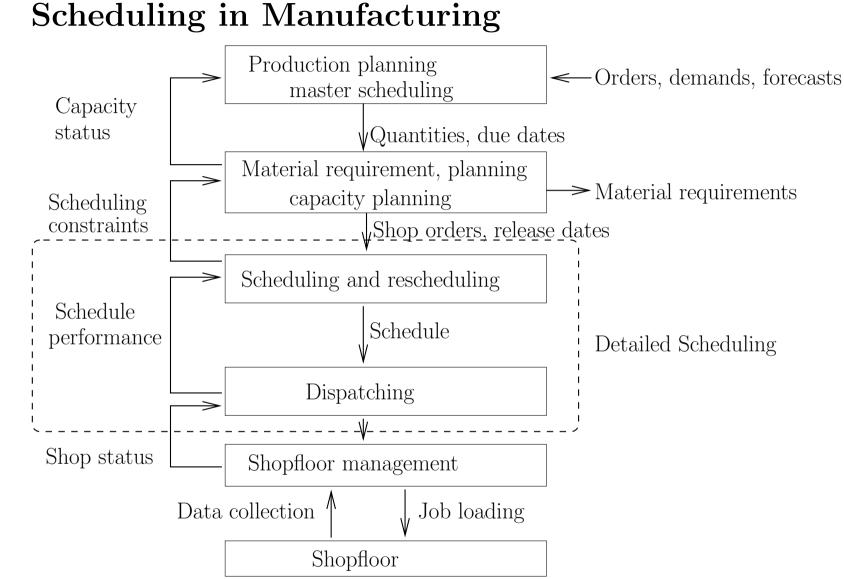
Scheduling in Manufacturing

Lecture 1

Scheduling

13





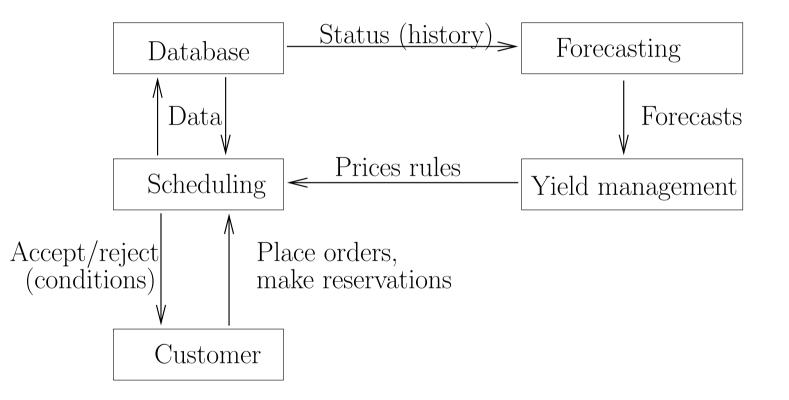
Lecture 1

Scheduling

15

Scheduling in Services

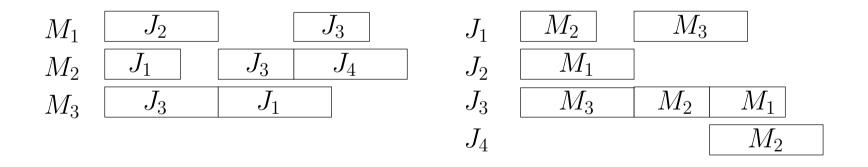
<u>Remark</u>: scheduling function in service organization is much more diverse than in manufacturing



Lecture 1

Scheduling models (manufacturing)

- scheduling concerns optimal allocation or assignment of resources, over time, to a set of tasks or activities
 - -m machines M_1, \ldots, M_m
 - -n jobs J_1, \ldots, J_n
- schedule may be represented by Gantt charts



Classification of Scheduling Problems

<u>General Notations</u>:

- m machines $1, \ldots, m$
- $n \text{ jobs } 1, \ldots, n$
- (i, j) processing of job j on machine i (called an operation)
- data for jobs:
 - $-p_{ij}$: processing time of operation (i, j)
 - $-\,\mathrm{if}$ a job need to be processed only on one machine or has only one operation:

1

- p_j processing time of job j
- $-r_j$: release date of job j (earliest starting time)
- $-d_j$: due date of job j (committed completion time)
- $-w_j$: weight of job j (importance)

Classification of Scheduling Problems

(Many) Scheduling problems can be described by a three field notation $\alpha|\beta|\gamma,$ where

-2-

- α describes the machine environment
- β describes the job characteristics, and
- γ describes the objective criterion to be minimized

<u>Remark</u>: A field may contain more than one entry but may also be empty.

- Single machine $(\alpha = 1)$
- Identical parallel machines ($\alpha = P$ or Pm)
 - -m identical machines;

if $\alpha = P$, the value *m* is part of the input and if $\alpha = Pm$, the value is considered as a constant (complexity theory)

1

- each job consist of a single operation and this may be processed by any of the machines for p_j time units
- Uniform parallel machines ($\alpha = Q$ or Qm)

-m parallel machines with different speeds s_1, \ldots, s_m

$$-p_{ij} = p_j/s_i$$

- $-\operatorname{each}$ job has to be processed by one of the machines
- if equal speeds: same situation as for identical machines

- Unrelated parallel machines ($\alpha = R$ or Rm)
 - -m different machines in parallel
 - $-p_{ij} = p_j/s_{ij}$, where s_{ij} is speed of job j on machine i each job has to be processed by one of the machines
- Flow Shop $(\alpha = F \text{ or } Fm)$
 - -m machines in series
 - $-\operatorname{each}$ job has to be processed on each machine
 - all jobs follow the same route: first machine 1, then machine 2, etc

-2-

 if the jobs have to be processed in the same order on all machines, we have a **permutation** flow shop

- Flexible Flow Shop $(\alpha = FF \text{ or } FFm)$
 - -a flow shop with m stages in series
 - at each stage a number of machines in parallel
- Job Shop ($\alpha = J$ or Jm)
 - $-\operatorname{each}$ job has its individual predetermined route to follow
 - $-\operatorname{a}$ job does not have to be processed on each machine
 - if a job can visit machines more than once, this is called **recircu- lation** or **reentrance**

-3-

• Flexible Job Shop $(\alpha = FJ \text{ or } FJm)$

– machines replaced by work centers with parallel identical machines

- Open Shop $(\alpha = O \text{ or } Om)$
 - $-\operatorname{each}$ job has to be processed on each machine once

4

- $-\operatorname{processing}$ times may be 0
- no routing restrictions (this is a scheduling decision)

Classification - Job characteristics

- release dates $(r_j \text{ is contained in } \beta \text{ field})$
 - if r_j is not in β field, jobs may start at any time
 - $-\operatorname{if} r_j$ is in β field, jobs may not start processing before their release date r_j

1

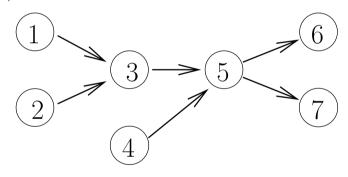
- preemption $(pmtn \text{ or } prmp \text{ is contained in } \beta \text{ field})$
 - processing of a job on a machine may be interrupted and resumed at a later time even on a different machine
 - $-\,{\rm the}$ already processed amount is not lost
- unit processing times $(p_j = 1 \text{ or } p_{ij} = 1 \text{ in } \beta \text{ field})$
 - each job (operation) has unit processing times
- \bullet other 'obvious' specifications (i.e. $d_j=d)$

Classification - Job characteristics

- precedence constraints (*prec* in β field)
 - between jobs precedence relations are given: a job may not start its processing before another job has been finished

-2-

- may be represented by an acyclic graph (vertices = jobs, arcs = precedence relations)



 special forms of the precedences are possible: if the graph is a chain, intree or outtree, *prec* is replaced by *chain*, *intree* or *outtree*

Classification - Objective criterion Notations:

- C_{ij} : completion time of operation (i, j)
- C_j : completion time of job j (= completion time of last operation)

1

•
$$L_j = C_j - d_j$$
: lateness of job j

• $T_j = \max\{C_j - d_j, 0\}$: tardiness of job j

•
$$U_j = \begin{cases} 1 & \text{if } C_j > d_j \\ 0 & \text{otherwise} \end{cases}$$
: unit penalty

Classification - Objective criterion

- Makespan ($\gamma = C_{max}$)
 - $-C_{max} = \max\{C_1, \ldots, C_n\}$
- Maximum lateness $(\gamma = L_{max})$
 - $-L_{max} = \max\{L_1, \ldots, L_n\}$
- Total completion time $(\gamma = \sum C_j)$
 - can be used to measure the Work-In-Progress (WIP)

-2-

- Total weighted completion time $(\gamma = \sum w_j C_j)$ - represents the weighted flow times of the jobs
- Total (weighted) tardiness $(\gamma = \sum (w_j)T_j)$
- (weighted) number of tardy jobs $(\gamma = \sum (w_j)U_j)$

<u>Remark</u>: the mentioned classification gives only an overview of the basic models; lots of further extensions can be found in the literature!

Lecture 1